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Preface

The fourth edition of Antenna Theory is designed to meet the needs of electrical engineering and
physics students at the senior undergraduate and beginning graduate levels, and those of practicing
engineers. The text presumes that the students have knowledge of basic undergraduate electromag-
netic theory, including Maxwell’s equations and the wave equation, introductory physics, and dif-
ferential and integral calculus. Mathematical techniques required for understanding some advanced
topics in the later chapters are incorporated in the individual chapters or are included as appendices.

The book, since its first edition in 1982 and subsequent two editions in 1997 and 2005, has been
a pacesetter and trail blazer in updating the contents to keep abreast with advancements in antenna
technology. This has been accomplished by:

Introducing new topics

Originating innovative features and multimedia to animate, visualize, illustrate and display
radiation characteristics

Providing design equations, procedures and associate software

This edition is no exception, as many new topics and features have been added. In particular:

New sections have been introduced on:

. Flexible and conformal bowtie

. Vivaldi antenna

. Antenna miniaturization

. Antennas for mobile communications
. Dielectric resonator antennas

. Scale modeling

Additional MATLAB and JAVA programs have been developed.

Color and gray scale figures and illustrations have been developed to clearly display and visu-
alize antenna radiation characteristics.

AN N BN

A companion website has been structured by the publisher which houses the MATLAB pro-
grams, JAVA-based applets and animations, Power Point notes, and JAVA-based interactive
questionnaires. A solutions manual is available only for the instructors that adopt the book as
a classroom text.

Over 100 additional end-of-chapter problems have been included.

While incorporating the above new topics and features in the current edition, the book maintained
all of the attractive features of the first three additions, especially the:

Three-dimensional graphs to display the radiation characteristics of antennas. This feature was
hailed, at the time of its introduction, as innovative and first of its kind addition in a textbook
on antennas.

Xiii
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¢ Advanced topics, such as a chapter on Smart Antennas and a section on Fractal Antennas.
e Multimedia:
1. Power Point notes
. MATLAB programs
. FORTRAN programs
. JAVA-based animations
. JAVA-based applets
. JAVA-based end-of-the-chapter questionnaires

AN AW

The book’s main objective is to introduce, in a unified manner, the fundamental principles of antenna
theory and to apply them to the analysis, design, and measurements of antennas. Because there are so
many methods of analysis and design and a plethora of antenna structures, applications are made to
some of the most basic and practical configurations, such as linear dipoles; loops; arrays; broadband,
and frequency-independent antennas; aperture antennas; horn antennas; microstrip antennas; and
reflector antennas.

A tutorial chapter on Smart Antennas is included to introduce the student in a technology that
will advance antenna theory and design, and revolutionize wireless communications. It is based
on antenna theory, digital signal processing, networks and communications. MATLAB simulation
software has also been included, as well as a plethora of references for additional reading.

Introductory material on analytical methods, such as the Moment Method and Fourier transform
(spectral) technique, is also included. These techniques, together with the fundamental principles
of antenna theory, can be used to analyze and design almost any antenna configuration. A chapter
on antenna measurements introduces state-of-the-art methods used in the measurements of the most
basic antenna characteristics (pattern, gain, directivity, radiation efficiency, impedance, current, and
polarization) and updates progress made in antenna instrumentation, antenna range design, and scale
modeling. Techniques and systems used in near- to far-field measurements and transformations are
also discussed.

A sufficient number of topics have been covered, some for the first time in an undergraduate text,
so that the book will serve not only as a text but also as a reference for the practicing and design
engineer and even the amateur radio buff. These include design procedures, and associated computer
programs, for Yagi—Uda and log-periodic arrays, horns, and microstrip patches; synthesis techniques
using the Schelkunoff, Fourier transform, Woodward—Lawson, Tschebyscheff, and Taylor meth-
ods; radiation characteristics of corrugated, aperture-matched, and multimode horns; analysis and
design of rectangular and circular microstrip patches; and matching techniques such as the binomial
and Tschebyscheff. Also new sections have been introduced on flexible & conformal bowtie and
Vivaldi antennas in Chapter 9, antenna miniaturization in Chapter 11 and expanded scale modeling in
Chapter 17.

Chapter 14 has been expanded to include antennas for Mobile Communications. In particular,
this new section includes basic concepts and design equations for the Planar Inverted-F Antenna
(PIFA), Slot Antenna, Inverted-F Antenna (IFA), Multiband U-type Slot Antenna, and Dielectric
Resonator Antennas (DRAs). These are popular internal antennas for mobile devices (smart phones,
laptops, pads, tablets, etc.). A MATLAB computer program, referred to as DRA_Analysis_Design,
has been developed to analyze the resonant frequencies of Rectangular, Cylindrical, Hemicylindri-
cal, and Hemispherical DRAs using TE and TM modal cavity techniques by modeling the walls as
PMCs. Hybrid modes are used to analyze and determine the resonant frequencies and quality fac-
tor (Q) of the Cylindrical DRA. The MATLAB program DRA _Analysis_Design has the capability,
using a nonlinear solver, to design (i.e., find the O, range of values for the dielectric constant, and
finally the dimensions of the Cylindrical DRA) once the hybrid mode (TE; 5, TM;5 or HE ), frac-
tional bandwidth (BW, in %), VSWR and resonant frequency (f,, in GHz) are specified. A detailed
procedure to follow the design is outlined in Section 14.10.4.



PREFACE XV

The text contains sufficient mathematical detail to enable the average undergraduate electrical
engineering and physics students to follow, without difficulty, the flow of analysis and design. A
certain amount of analytical detail, rigor, and thoroughness allows many of the topics to be traced
to their origin. My experiences as a student, engineer, and teacher have shown that a text for this
course must not be a book of unrelated formulas, and it must not resemble a “cookbook.” This book
begins with the most elementary material, develops underlying concepts needed for sequential topics,
and progresses to more advanced methods and system configurations. Each chapter is subdivided
into sections or subsections whose individual headings clearly identify the antenna characteristic(s)
discussed, examined, or illustrated.

A distinguished feature of this book is its three-dimensional graphical illustrations from the first
edition, which have been expanded and supplemented in the second, third and fourth editions. In
the past, antenna texts have displayed the three-dimensional energy radiated by an antenna by a
number of separate two-dimensional patterns. With the advent and revolutionary advances in digi-
tal computations and graphical displays, an additional dimension has been introduced for the first
time in an undergraduate antenna text by displaying the radiated energy of a given radiator by a
single three-dimensional graphical illustration. Such an image, formed by the graphical capabilities
of the computer and available at most computational facilities, gives a clear view of the energy radi-
ated in all space surrounding the antenna. In this fourth edition, almost all of the three-dimensional
amplitude radiation patterns, along with many two-dimensional graphs, are depicted in color and
gray-scale. This is a new and pacesetting feature adopted, on a large scale, in this edition. It is hoped
that this will lead to a better understanding of the underlying principles of radiation and provide a
clearer visualization of the pattern formation in all space.

In addition, there is an abundance of general graphical illustrations, design data, references, and an
expanded list of end-of-the chapter problems. Many of the principles are illustrated with examples,
graphical illustrations, and physical arguments. Although students are often convinced that they
understand the principles, difficulties arise when they attempt to use them. An example, especially
a graphical illustration, can often better illuminate those principles. As they say, “a picture is worth
a thousand words.”

Numerical techniques and computer solutions are illustrated and encouraged. A number of
MATLAB computer programs are included in the publisher’s website for the book. Each program
is interactive and prompts the user to enter the data in a sequential manner. Some of these programs
are translations of the FORTRAN ones that were included in the first and second editions. However,
many new ones have been developed. Every chapter, other than Chapters 3 and 17, has at least one
MATLAB computer program; some have as many as four. The outputs of the MATLAB programs
include graphical illustrations and tabulated results. For completeness, the FORTRAN computer
programs are also included, although nowdays there is not as much interest in them. The computer
programs can be used for analysis and design. Some of them are more of the design type while some
of the others are of the analysis type. Associated with each program there is a READ ME file, which
summarizes the respective program.

The purpose of the Power Point Lecture Notes is to provide the instructors a copy of the text figures
and some of the most important equations of each chapter. They can be used by the instructors in
their lectures but may be supplemented with additional narratives. The students can use them to
listen to the instructors’ lectures, without having to take detailed notes, but can supplement them in
the margins with annotations from the lectures. Each instructor will use the notes in a different way.

The Interactive Questionnaires are intended as reviews of the material in each chapter. The student
can use them to review for tests, exams, and so on. For each question, there are three possible answers,
but only one is correct. If the reader chooses one of them and it the correct answer, it will so indicate.
However, if the chosen answer is the wrong one, the program will automatically indicate the correct
answer. An explanation button is provided, which gives a short narrative on the correct answer or
indicates where in the book the correct answer can be found.
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The Animations can be used to illustrate some of the radiation characteristics, such as amplitude
patterns, of some antenna types, like line sources, dipoles, loops, arrays, and horns. The Applets cover
more chapters and can be used to examine some of the radiation characteristics (such as amplitude
patterns, impedance, bandwidth, etc.) of some of the antennas. This can be accomplished very rapidly
without having to resort to the MATLAB programs, which are more detailed.

For course use, the text is intended primarily for a two-semester (or two- or three-quarter)
sequence in antenna theory. The first course should be given at the senior undergraduate level, and
should cover most of the material in Chapters 1 through 7, and some sections of Chapters 14, 16 and
17. The material in Chapters 8§ through 16 should be covered in detail in a beginning graduate-level
course. Selected chapters and sections from the book can be covered in a single semester, without
loss of continuity. However, it is essential that most of the material in Chapters 2 through 6 be cov-
ered in the first course and before proceeding to any more advanced topics. To cover all the material
of the text in the proposed time frame would be, in some cases, an ambitious and challenging task.
Sufficient topics have been included, however, to make the text complete and to give the teacher
the flexibility to emphasize, deemphasize, or omit sections or chapters. Some of the chapters and
sections can be omitted without loss of continuity.

In the entire book, an ¢/’ time variation is assumed, and it is suppressed. The International Sys-
tem of Units, which is an expanded form of the rationalized MKS system, is used in the text. In
some cases, the units of length are in meters (or centimeters) and in feet (or inches). Numbers in
parentheses () refer to equations, whereas those in brackets [] refer to references. For emphasis, the
most important equations, once they are derived, are boxed. In some of the basic chapters, the most
important equations are summarized in tables.

I will like to acknowledge the invaluable suggestions from all those that contributed to the first
three additions of the book, too numerous to mention here. Their names and contributions are stated
in the respective editions. It is my pleasure to acknowledge the suggestions of the reviewers for
the fourth edition: Dr. Stuart A. Long of the University of Houston, Dr. Leo Kempel of Michigan
State University, and Dr. Cynthia M. Furse of the University of Utah. There have been other con-
tributors to this edition, and their contributions are valued and acknowledged. Many graduate and
undergraduate students at Arizona State University have written and verified most of the MATLAB
computer programs; some of these programs were translated from FORTRAN, which appeared in
the first three editions and updated for the fourth edition. However some new MATLAB and JAVA
programs have been created, which are included for the first time in the fourth edition. I am indebted
to Dr. Alix Rivera-Albino who developed with special care all of the color and gray scale figures
and illustrations for the fourth edition and contributed to the manuscript and figures for the Vivaldi
and mobile antennas. The author also acknowledges Dr. Razib S. Shishir of Intel, formerly of Ari-
zona State University, for the JAVA-based software for the third edition, including the Interactive
Questionnaires, Applets and Animations. These have been supplemented with additional ones for
the fourth edition. Many thanks to Dr. Stuart A. Long, from the University of Houston, for review-
ing the section on DRAs and Dr. Christos Christodoulou, from the University of New Mexico, for
reviewing the manuscript on antennas for mobile devices, Dr. Peter J. Bevelacqua of Google for mate-
rial related to planar antennas for mobile units, Dr. Arnold Mckinley of University College London
(formerly with the Australian National University) for information and computer program related
to nonuniform loop antennas, Dr. Steven R. Best of Mitre Corporation for figures on the folded
spherical helix, Dr. Edward J. Rothwell, from Michigan State University, for antenna miniaturiza-
tion information, Dr. Seong-Ook Park of the Korea Advanced Institute of Science and Technology
(KAIST), for the photo and permission of the U-slot antenna, and Dr. Yahia Antar and Dr. Jawad
Y. Siddiqui, both from the Royal Military College of Canada, for information related to cylindri-
cal DRAs. I would also like to thank Craig R. Birtcher, and my graduate students Dr. Ahmet C.
Durgun (now with Intel), Dr. Nafati Aboserwal (now at the University of Oklahoma), Sivaseethara-
man Pandi, Mikal Askarian Amiri, Wengang Chen, Saud Saeed and Anuj Modi, all of Arizona State
University, for proofreading of the manuscript and many other contributions to the fourth edition.
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Special thanks to the companies that contributed photos, illustrations and copyright permissions for
the third edition. However, other companies, Samsung, Microsoft and HTC have provided updated
photos of their respective smart phones for the fourth edition.

During my 50+ year professional career, I have made many friends and professional colleagues.
The list is too long to be included here, as I fear that I may omit someone. Thank you for your friend-
ship, collegiality and comradery. I will like to recognize George C. Barber, Dennis DeCarlo and the
entire membership (members, government agencies and companies) of the Advanced Helicopter
Electromagnetics (AHE) Program for the 25 years of interest and support. It has been an unprece-
dented professional partnership and collaboration. To all my teachers and mentors, thank you. You
have been my role models and inspiration.

This journey got started in the middle to the late 1970s, at the early stages of my academic career.
Many may speculate why I have chosen to remain as the sole author and steward for so many years,
dating back to first edition in 1982 and then through the subsequent three editions of this book and
two editions of the Advanced Engineering Electromagnetics book. I wanted, as long as I was able to
accomplish the tasks, to have the books manifest my own fingerprint and reflect my personal philoso-
phy, methodology and pedagogy. Also I wanted the manuscript to display continuity and consistency,
and to control my own destiny, in terms of material to be included and excluded, revisions, deadlines
and timelines. Finally, I wanted to be responsible for the contents of the book. In the words of Frank
Sinatra, ‘I did it my way.” Each edition presented its own challenges, but each time I cherished and
looked forward to the mission and venture.

I am also grateful to the staff of John Wiley & Sons, Inc., especially Brett Kurzman, Editor, Alex
Castro, Editorial Assistant, and Danielle LaCourciere, Production Editor for this edition. Special
thanks to Shikha Sharma, from Aptara, Inc., for supervising the typesetting of the book. Finally
I must pay tribute and homage to my family (Helen, Renie, Stephanie, Bill, Pete and Ellie) for
their unconditional support, patience, sacrifice, and understanding for the many years of neglect
during the completion of all four editions of this book and two editions of the Advanced Engineering
Electromagnetics. Each edition has been a pleasant experience although a daunting task.

Constantine A. Balanis
Arizona State University
Tempe, AZ






About the Companion Website

There is a student companion website that contains:

* PowerPoint Viewgraphs
MATLAB Programs
JAVA Applets

¢ Animations

End-of-Chapter Interactive Questionnaires

To access the material on the companion site simply find your unique website redemption
code printed on the inside front endpaper of this book. Peel off the sticker and then visit
www.wiley.com/go/antennatheory4e to follow the instructions for how to register your pin.

If you have purchased this title as an e-book, Wiley Customer Care will provide your access code
for the companion website. Visit http://support.wiley.com to request via the “Live Chat” or “Ask A
Question” tabs, within 90 days of purchase, and please have your receipt for verification.

This book is also accompanied by a password protected companion website for instructors only.
This website contains:

* Power Point Viewgraphs

e MATLAB Programs

e JAVA Applets

* Animations

¢ End-of-Chapter Interactive Questionnaires
¢ Solutions Manual

To access the material on the instructor’s website simply visit www.wiley.com/go/
instructors_antennatheory4e and follow the instructions for how to register.
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CHAPTER 1
e EEE

Antennas

1.1 INTRODUCTION

An antenna is defined by Webster’s Dictionary as “a usually metallic device (as a rod or wire) for
radiating or receiving radio waves.” The IEEE Standard Definitions of Terms for Antennas (IEEE
Std 145-1983)* defines the antenna or aerial as “a means for radiating or receiving radio waves.”
In other words the antenna is the transitional structure between free-space and a guiding device, as
shown in Figure 1.1. The guiding device or transmission line may take the form of a coaxial line or
a hollow pipe (waveguide), and it is used to transport electromagnetic energy from the transmitting
source to the antenna, or from the antenna to the receiver. In the former case, we have a transmitting
antenna and in the latter a receiving antenna.

A transmission-line Thevenin equivalent of the antenna system of Figure 1.1 in the transmitting
mode is shown in Figure 1.2 where the source is represented by an ideal generator, the transmission
line is represented by a line with characteristic impedance Z_, and the antenna is represented by a
load Z, [Z4 = (R;, + R,) + jX,] connected to the transmission line. The Thevenin and Norton circuit
equivalents of the antenna are also shown in Figure 2.27. The load resistance R; is used to represent
the conduction and dielectric losses associated with the antenna structure while R,, referred to as
the radiation resistance, is used to represent radiation by the antenna. The reactance X, is used
to represent the imaginary part of the impedance associated with radiation by the antenna. This is
discussed more in detail in Sections 2.13 and 2.14. Under ideal conditions, energy generated by the
source should be totally transferred to the radiation resistance R,., which is used to represent radiation
by the antenna. However, in a practical system there are conduction-dielectric losses due to the lossy
nature of the transmission line and the antenna, as well as those due to reflections (mismatch) losses
at the interface between the line and the antenna. Taking into account the internal impedance of
the source and neglecting line and reflection (mismatch) losses, maximum power is delivered to the
antenna under conjugate matching. This is discussed in Section 2.13.

The reflected waves from the interface create, along with the traveling waves from the source
toward the antenna, constructive and destructive interference patterns, referred to as standing waves,
inside the transmission line which represent pockets of energy concentrations and storage, typical
of resonant devices. A typical standing wave pattern is shown dashed in Figure 1.2, while another
is exhibited in Figure 1.15. If the antenna system is not properly designed, the transmission line

*IEEE Transactions on Antennas and Propagation, vols. AP-17, No. 3, May 1969; AP-22, No. 1, January 1974; and AP-31,
No. 6, Part II, November 1983.
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could act to a large degree as an energy storage element instead of as a wave guiding and energy
transporting device. If the maximum field intensities of the standing wave are sufficiently large, they
can cause arching inside the transmission lines.

The losses due to the line, antenna, and the standing waves are undesirable. The losses due to the

line can be minimized by selecting low-loss lines while those of the antenna can be decreased by
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reducing the loss resistance represented by R; in Figure 1.2. The standing waves can be reduced, and
the energy storage capacity of the line minimized, by matching the impedance of the antenna (load)
to the characteristic impedance of the line. This is the same as matching loads to transmission lines,
where the load here is the antenna, and is discussed more in detail in Section 9.7. An equivalent
similar to that of Figure 1.2 is used to represent the antenna system in the receiving mode where the
source is replaced by a receiver. All other parts of the transmission-line equivalent remain the same.
The radiation resistance R, is used to represent in the receiving mode the transfer of energy from the
free-space wave to the antenna. This is discussed in Section 2.13 and represented by the Thevenin
and Norton circuit equivalents of Figure 2.27.

In addition to receiving or transmitting energy, an antenna in an advanced wireless system is
usually required to optimize or accentuate the radiation energy in some directions and suppress it in
others. Thus the antenna must also serve as a directional device in addition to a probing device. It
must then take various forms to meet the particular need at hand, and it may be a piece of conducting
wire, an aperture, a patch, an assembly of elements (array), a reflector, a lens, and so forth.

For wireless communication systems, the antenna is one of the most critical components. A good
design of the antenna can relax system requirements and improve overall system performance. A
typical example is the TV for which the overall broadcast reception can be improved by utilizing
a high-performance antenna. The antenna serves to a communication system the same purpose that
eyes and eyeglasses serve to a human.

The field of antennas is vigorous and dynamic, and over the last 60 years antenna technology has
been an indispensable partner of the communications revolution. Many major advances that occurred
during this period are in common use today; however, many more issues and challenges are facing
us today, especially since the demands for system performances are even greater. Many of the major
advances in antenna technology that have been completed in the 1970s through the early 1990s,
those that were under way in the early 1990s, and signals of future discoveries and breakthroughs
were captured in a special issue of the Proceedings of the IEEE (Vol. 80, No. 1, January 1992)
devoted to Antennas. The introductory paper of this special issue [1] provides a carefully structured,
elegant discussion of the fundamental principles of radiating elements and has been written as an
introduction for the nonspecialist and a review for the expert.

1.2 TYPES OF ANTENNAS

We will now introduce and briefly discuss some forms of the various antenna types in order to get a
glance as to what will be encountered in the remainder of the book.

1.2.1 Wire Antennas

Wire antennas are familiar to the layman because they are seen virtually everywhere—on automo-
biles, buildings, ships, aircraft, spacecraft, and so on. There are various shapes of wire antennas such
as a straight wire (dipole), loop, and helix which are shown in Figure 1.3. Loop antennas need not
only be circular. They may take the form of a rectangle, square, ellipse, or any other configuration.
The circular loop is the most common because of its simplicity in construction. Dipoles are discussed
in more detail in Chapter 4, loops in Chapter 5, and helices in Chapter 10.

1.2.2 Aperture Antennas

Aperture antennas may be more familiar to the layman today than in the past because of the increasing
demand for more sophisticated forms of antennas and the utilization of higher frequencies. Some
forms of aperture antennas are shown in Figure 1.4. Antennas of this type are very useful for aircraft
and spacecraft applications, because they can be very conveniently flush-mounted on the skin of
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Figure 1.3 Wire antenna configurations.
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Figure 1.4 Aperture antenna configurations.



TYPES OF ANTENNAS 5

the aircraft or spacecraft. In addition, they can be covered with a dielectric material to protect them
from hazardous conditions of the environment. Waveguide apertures are discussed in more detail in
Chapter 12 while horns are examined in Chapter 13.

1.2.3 Microstrip Antennas

Microstrip antennas became very popular in the 1970s primarily for spaceborne applications. Today
they are used for government and commercial applications. These antennas consist of a metallic
patch on a grounded substrate. The metallic patch can take many different configurations, as shown in
Figure 14.2. However, the rectangular and circular patches, shown in Figure 1.5, are the most popular
because of ease of analysis and fabrication, and their attractive radiation characteristics, especially
low cross-polarization radiation. The microstrip antennas are low profile, comformable to planar and
nonplanar surfaces, simple and inexpensive to fabricate using modern printed-circuit technology,
mechanically robust when mounted on rigid surfaces, compatible with MMIC designs, and very
versatile in terms of resonant frequency, polarization, pattern, and impedance. These antennas can
be mounted on the surface of high-performance aircraft, spacecraft, satellites, missiles, cars, and
even mobile devices. They are discussed in more detail in Chapter 14.

1.2.4 Array Antennas

Many applications require radiation characteristics that may not be achievable by a single element.
It may, however, be possible that an aggregate of radiating elements in an electrical and geometrical

dn
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w
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Ground plane

(a) Rectangular

| &, Substrate

Ground plane
(b) Circular

Figure 1.5 Rectangular and circular microstrip (patch) antennas.
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arrangement (an array) will result in the desired radiation characteristics. The arrangement of the
array may be such that the radiation from the elements adds up to give a radiation maximum in a
particular direction or directions, minimum in others, or otherwise as desired. Typical examples of
arrays are shown in Figure 1.6. Usually the term array is reserved for an arrangement in which the
individual radiators are separate as shown in Figures 1.6(a—c). However the same term is also used
to describe an assembly of radiators mounted on a continuous structure, shown in Figure 1.6(d).

1.2.5 Reflector Antennas

The success in the exploration of outer space has resulted in the advancement of antenna theory.
Because of the need to communicate over great distances, sophisticated forms of antennas had to
be used in order to transmit and receive signals that had to travel millions of miles. A very com-
mon antenna form for such an application is a parabolic reflector shown in Figures 1.7(a) and (b).
Antennas of this type have been built with diameters of 305 m or even larger. Such large dimensions
are needed to achieve the high gain required to transmit or receive signals after millions of miles of
travel. Another form of a reflector, although not as common as the parabolic, is the corner reflector,
shown in Figure 1.7(c). These antennas are examined in detail in Chapter 15.

1.2.6 Lens Antennas

Lenses are primarily used to collimate incident divergent energy to prevent it from spreading in
undesired directions. By properly shaping the geometrical configuration and choosing the appropri-
ate material of the lenses, they can transform various forms of divergent energy into plane waves.
They can be used in most of the same applications as are the parabolic reflectors, especially at
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Figure 1.7  Typical reflector configurations.

higher frequencies. Their dimensions and weight become exceedingly large at lower frequencies.
Lens antennas are classified according to the material from which they are constructed, or according
to their geometrical shape. Some forms are shown in Figure 1.8 [2].

In summary, an ideal antenna is one that will radiate all the power delivered to it from the trans-
mitter in a desired direction or directions. In practice, however, such ideal performances cannot be
achieved but may be closely approached. Various types of antennas are available and each type can
take different forms in order to achieve the desired radiation characteristics for the particular appli-
cation. Throughout the book, the radiation characteristics of most of these antennas are discussed
in detail.

1.3 RADIATION MECHANISM

One of the first questions that may be asked concerning antennas would be “how is radiation accom-
plished?” In other words, how are the electromagnetic fields generated by the source, contained and
guided within the transmission line and antenna, and finally “detached” from the antenna to form a
free-space wave? The best explanation may be given by an illustration. However, let us first examine
some basic sources of radiation.

1.3.1 Single Wire

Conducting wires are material whose prominent characteristic is the motion of electric charges and
the creation of current. Let us assume that an electric volume charge density, represented by ¢,
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Figure 1.8 Typical lens antenna configurations. (SOURCE: L. V. Blake, Antennas, Wiley, New York, 1966).

(coulombs/m3), is distributed uniformly in a circular wire of cross-sectional area A and volume V,
as shown in Figure 1.9. The total charge Q within volume V is moving in the z direction with a
uniform velocity v, (meters/sec). It can be shown that the current density J, (amperes/m?) over the
cross section of the wire is given by [3]

J, =q,v, (1-1a)

If the wire is made of an ideal electric conductor, the current density J, (amperes/m) resides on the
surface of the wire and it is given by

=q,v, (1-1b)

Figure 1.9  Charge uniformly distributed in a circular cross section cylinder wire.
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where g, (coulombs/m?) is the surface charge density. If the wire is very thin (ideally zero radius),
then the current in the wire can be represented by

I =qp, (1-1c)

where g; (coulombs/m) is the charge per unit length.

Instead of examining all three current densities, we will primarily concentrate on the very thin
wire. The conclusions apply to all three. If the current is time varying, then the derivative of the
current of (1-1¢) can be written as

dl dv

= =4 = 0 (1-2)

where dv,/dt = a, (meters/sec?) is the acceleration. If the wire is of length [, then (1-2) can be
written as

R 1-3)
dt—‘llt—%az -

Equation (1-3) is the basic relation between current and charge, and it also serves as the fundamental
relation of electromagnetic radiation [4], [S]. It simply states that fo create radiation, there must be
a time-varying current or an acceleration (or deceleration) of charge. We usually refer to currents
in time-harmonic applications while charge is most often mentioned in transients. To create charge
acceleration (or deceleration) the wire must be curved, bent, discontinuous, or terminated [1], [4].
Periodic charge acceleration (or deceleration) or time-varying current is also created when charge is
oscillating in a time-harmonic motion, as shown in Figure 1.17 for a /2 dipole. Therefore:

1. If a charge is not moving, current is not created and there is no radiation.
2. If charge is moving with a uniform velocity:
a. There is no radiation if the wire is straight, and infinite in extent.

b. There is radiation if the wire is curved, bent, discontinuous, terminated, or truncated, as
shown in Figure 1.10.

3. If charge is oscillating in a time-motion, it radiates even if the wire is straight.

A qualitative understanding of the radiation mechanism may be obtained by considering a pulse
source attached to an open-ended conducting wire, which may be connected to the ground through
a discrete load at its open end, as shown in Figure 1.10(d). When the wire is initially energized, the
charges (free electrons) in the wire are set in motion by the electrical lines of force created by the
source. When charges are accelerated in the source-end of the wire and decelerated (negative accel-
eration with respect to original motion) during reflection from its end, it is suggested that radiated
fields are produced at each end and along the remaining part of the wire, [1], [4]. Stronger radiation
with a more broad frequency spectrum occurs if the pulses are of shorter or more compact duration
while continuous time-harmonic oscillating charge produces, ideally, radiation of single frequency
determined by the frequency of oscillation. The acceleration of the charges is accomplished by the
external source in which forces set the charges in motion and produce the associated field radiated.
The deceleration of the charges at the end of the wire is accomplished by the internal (self) forces
associated with the induced field due to the buildup of charge concentration at the ends of the wire.
The internal forces receive energy from the charge buildup as its velocity is reduced to zero at the
ends of the wire. Therefore, charge acceleration due to an exciting electric field and deceleration due
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Figure 1.10  Wire configurations for radiation.

to impedance discontinuities or smooth curves of the wire are mechanisms responsible for electro-
magnetic radiation. While both current density (J.) and charge density (g,) appear as source terms
in Maxwell’s equation, charge is viewed as a more fundamental quantity, especially for transient
fields. Even though this interpretation of radiation is primarily used for transients, it can be used to
explain steady state radiation [4].

1.3.2 Two-Wires

Let us consider a voltage source connected to a two-conductor transmission line which is connected
to an antenna. This is shown in Figure 1.11(a). Applying a voltage across the two-conductor trans-
mission line creates an electric field between the conductors. The electric field has associated with
it electric lines of force which are tangent to the electric field at each point and their strength is
proportional to the electric field intensity. The electric lines of force have a tendency to act on the
free electrons (easily detachable from the atoms) associated with each conductor and force them to
be displaced. The movement of the charges creates a current that in turn creates a magnetic field
intensity. Associated with the magnetic field intensity are magnetic lines of force which are tangent
to the magnetic field.
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Figure 1.11  Source, transmission line, antenna, and detachment of electric field lines.

We have accepted that electric field lines start on positive charges and end on negative charges.
They also can start on a positive charge and end at infinity, start at infinity and end on a negative
charge, or form closed loops neither starting or ending on any charge. Magnetic field lines always
form closed loops encircling current-carrying conductors because physically there are no magnetic
charges. In some mathematical formulations, it is often convenient to introduce equivalent magnetic
charges and magnetic currents to draw a parallel between solutions involving electric and mag-
netic sources.

The electric field lines drawn between the two conductors help to exhibit the distribution of charge.
If we assume that the voltage source is sinusoidal, we expect the electric field between the conduc-
tors to also be sinusoidal with a period equal to that of the applied source. The relative magnitude of
the electric field intensity is indicated by the density (bunching) of the lines of force with the arrows
showing the relative direction (positive or negative). The creation of time-varying electric and mag-
netic fields between the conductors forms electromagnetic waves which travel along the transmission
line, as shown in Figure 1.11(a). The electromagnetic waves enter the antenna and have associated
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Figure 1.12  Electric field lines of free-space wave for a A/2 antenna at t = 0, T/8, T/4, and 37/8. (SOURCE:
J. D. Kraus, Electromagnetics, 4th ed., McGraw-Hill, New York, 1992. Reprinted with permission of J. D. Kraus
and John D. Cowan, Jr.).

with them electric charges and corresponding currents. If we remove part of the antenna structure,
as shown in Figure 1.11(b), free-space waves can be formed by “connecting” the open ends of the
electric lines (shown dashed). The free-space waves are also periodic but a constant phase point P,
moves outwardly with the speed of light and travels a distance of A/2 (to P;) in the time of one-half
of a period. It has been shown [6] that close to the antenna the constant phase point Py moves faster
than the speed of light but approaches the speed of light at points far away from the antenna (analo-
gous to phase velocity inside a rectangular waveguide). Figure 1.12 displays the creation and travel
of free-space waves by a prolate spheroid with A/2 interfocal distance where A is the wavelength.
The free-space waves of a center-fed A/2 dipole, except in the immediate vicinity of the antenna, are
essentially the same as those of the prolate spheroid.

The question still unanswered is how the guided waves are detached from the antenna to create
the free-space waves that are indicated as closed loops in Figures 1.11 and 1.12. Before we attempt
to explain that, let us draw a parallel between the guided and free-space waves, and water waves
[7] created by the dropping of a pebble in a calm body of water or initiated in some other manner.
Once the disturbance in the water has been initiated, water waves are created which begin to travel
outwardly. If the disturbance has been removed, the waves do not stop or extinguish themselves
but continue their course of travel. If the disturbance persists, new waves are continuously created
which lag in their travel behind the others. The same is true with the electromagnetic waves created
by an electric disturbance. If the initial electric disturbance by the source is of a short duration, the
created electromagnetic waves travel inside the transmission line, then into the antenna, and finally
are radiated as free-space waves, even if the electric source has ceased to exist (as was with the
water waves and their generating disturbance). If the electric disturbance is of a continuous nature,
electromagnetic waves exist continuously and follow in their travel behind the others. This is shown
in Figure 1.13 for a biconical antenna. When the electromagnetic waves are within the transmission
line and antenna, their existence is associated with the presence of the charges inside the conductors.
However, when the waves are radiated, they form closed loops and there are no charges to sustain
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Figure 1.13  Electric field lines of free-space wave for biconical antenna.

their existence. This leads us to conclude that electric charges are required to excite the fields but are
not needed to sustain them and may exist in their absence. This is in direct analogy with water waves.

1.3.3 Dipole

Now let us attempt to explain the mechanism by which the electric lines of force are detached from
the antenna to form the free-space waves. This will again be illustrated by an example of a small
dipole antenna where the time of travel is negligible. This is only necessary to give a better physical
interpretation of the detachment of the lines of force. Although a somewhat simplified mechanism,
it does allow one to visualize the creation of the free-space waves. Figure 1.14(a) displays the lines
of force created between the arms of a small center-fed dipole in the first quarter of the period during
which time the charge has reached its maximum value (assuming a sinusoidal time variation) and the
lines have traveled outwardly a radial distance A/4. For this example, let us assume that the number
of lines formed are three. During the next quarter of the period, the original three lines travel an
additional A/4 (a total of A/2 from the initial point) and the charge density on the conductors begins
to diminish. This can be thought of as being accomplished by introducing opposite charges which
at the end of the first half of the period have neutralized the charges on the conductors. The lines of
force created by the opposite charges are three and travel a distance A /4 during the second quarter of
the first half, and they are shown dashed in Figure 1.14(b). The end result is that there are three lines
of force pointed upward in the first A/4 distance and the same number of lines directed downward
in the second A/4. Since there is no net charge on the antenna, then the lines of force must have
been forced to detach themselves from the conductors and to unite together to form closed loops.
This is shown in Figure 1.14(c). In the remaining second half of the period, the same procedure is
followed but in the opposite direction. After that, the process is repeated and continues indefinitely
and electric field patterns, similar to those of Figure 1.12, are formed.

1.3.4 Computer Animation-Visualization of Radiation Problems

A difficulty that students usually confront is that the subject of electromagnetics is rather abstract,
and it is hard to visualize electromagnetic wave propagation and interaction. With today’s advanced
numerical and computational methods, and animation and visualization software and hardware, this
dilemma can, to a large extent, be minimized. To address this problem, we have developed and
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Figure 1.14  Formation and detachment of electric field lines for short dipole.

included in this chapter computer programs to animate and visualize three radiation mechanisms.
Descriptions of the computer programs are found in the website created by the publisher for this
book. Each problem is solved using the Finite-Difference Time-Domain (FD-TD) method [8]-[10],
a method which solves Maxwell’s equations as a function of time in discrete time steps at discrete
points in space. A picture of the fields can then be taken at each time step to create a video which can
be viewed as a function of time. Other animation and visualization software, referred to as applets,
are included in the book website.

The three radiation problems that are animated and can be visualized using the computer program
of this chapter and included in the book website are:

a. Infinite length line source (two-dimensional) excited by a single Gaussian pulse and radiating
in an unbounded medium.

b. Infinite length line source (two-dimensional) excited by a single Gaussian pulse and radiating
inside a perfectly electric conducting (PEC) square cylinder.

c. E-plane sectoral horn (two-dimensional form of Figure 13.2) excited by a continuous cosinu-
soidal voltage source and radiating in an unbounded medium.
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In order to animate and then visualize each of the three radiation problems, the user needs
MATLAB [11] and the MATLAB M-file, found in the publisher’s website for the book, to produce
the corresponding FD-TD solution of each radiation problem. For each radiation problem, the M-
File executed in MATLAB produces a video by taking a picture of the computational domain every
third time step. The video is viewed as a function of time as the wave travels in the computational
space.

A. Infinite Line Source in an Unbounded Medium (tm_open)

The first FD-TD solution is that of an infinite length line source excited by a single time-derivative
Gaussian pulse, with a duration of approximately 0.4 nanoseconds, in a two-dimensional TM?*-
computational domain. The unbounded medium is simulated using a six-layer Berenger Perfectly
Matched Layer (PML) Absorbing Boundary Condition (ABC) [9], [10] to truncate the computa-
tional space at a finite distance without, in principle, creating any reflections. Thus, the pulse travels
radially outward creating a traveling type of a wavefront. The outward moving wavefronts are easily
identified using the coloring scheme for the intensity (or gray scale for black and white monitors)
when viewing the video. The video is created by the MATLAB M-File which produces the FD-TD
solution by taking a picture of the computational domain every third time step. Each time step is
5 picoseconds while each FD-TD cell is 3 mm on a side. The video is 37 frames long covering
185 picoseconds of elapsed time. The entire computational space is 15.3 cm by 15.3 cm and is mod-
eled by 2500 square FD-TD cells (50 x 50), including 6 cells to implement the PML ABC.

B. Infinite Line Source in a PEC Square Cylinder (tm_box)

This problem is simulated similarly as that of the line source in an unbounded medium, including the
characteristics of the pulse. The major difference is that the computational domain of this problem is
truncated by PEC walls; therefore there is no need for PML ABC. For this problem the pulse travels
in an outward direction and is reflected when it reaches the walls of the cylinder. The reflected pulse,
along with the radially outward traveling pulse, interfere constructively and destructively with each
other and create a standing type of a wavefront. The peaks and valleys of the modified wavefront
can be easily identified when viewing the video, using the colored or gray scale intensity schemes.
Sufficient time is allowed in the video to permit the pulse to travel from the source to the walls of
the cylinder, return back to the source, and then return back to the walls of the cylinder. Each time
step is 5 picoseconds and each FD-TD cell is 3 mm on a side. The video is 70 frames long covering
350 picoseconds of elapsed time. The square cylinder, and thus the computational space, has a cross
section of 15.3 cm by 15.3 cm and is modeled using an area 50 by 50 FD-TD cells.

C. E-Plane Sectoral Horn in an Unbounded Medium (te_horn)

The E-plane sectoral horn is excited by a cosinusoidal voltage (CW) of 9.84 GHz in a TE* com-
putational domain, instead of the Gaussian pulse excitation of the previous two problems. The
unbounded medium is implemented using an eight-layer Berenger PML ABC. The computational
space is 25.4 cm by 25.4 cm and is modeled using 100 by 100 FD-TD cells (each square cell being
2.54 mm on a side). The video is 70 frames long covering 296 picoseconds of elapsed time and is
created by taking a picture every third frame. Each time step is 4.23 picoseconds in duration. The
horn has a total flare angle of 52° and its flared section is 2.62 cm long, is fed by a parallel plate
1 cm wide and 4.06 cm long, and has an aperture of 3.56 cm.

1.4 CURRENT DISTRIBUTION ON A THIN WIRE ANTENNA

In the preceding section we discussed the movement of the free electrons on the conductors rep-
resenting the transmission line and the antenna. In order to illustrate the creation of the current
distribution on a linear dipole, and its subsequent radiation, let us first begin with the geometry of a
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Figure 1.15  Current distribution on a lossless two-wire transmission line, flared transmission line, and lin-
ear dipole.

lossless two-wire transmission line, as shown in Figure 1.15(a). The movement of the charges cre-
ates a traveling wave current, of magnitude /,/2, along each of the wires. When the current arrives
at the end of each of the wires, it undergoes a complete reflection (equal magnitude and 180° phase
reversal). The reflected traveling wave, when combined with the incident traveling wave, forms in
each wire a pure standing wave pattern of sinusoidal form as shown in Figure 1.15(a). The current
in each wire undergoes a 180° phase reversal between adjoining half-cycles. This is indicated in
Figure 1.15(a) by the reversal of the arrow direction. Radiation from each wire individually occurs
because of the time-varying nature of the current and the termination of the wire.

For the two-wire balanced (symmetrical) transmission line, the current in a half-cycle of one wire
is of the same magnitude but 180° out-of-phase from that in the corresponding half-cycle of the other
wire. If in addition the spacing between the two wires is very small (s < 1), the fields radiated by
the current of each wire are essentially cancelled by those of the other. The net result is an almost
ideal (and desired) nonradiating transmission line.
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As the section of the transmission line between 0 < z < /2 begins to flare, as shown in Fig-
ure 1.15(b), it can be assumed that the current distribution is essentially unaltered in form in each
of the wires. However, because the two wires of the flared section are not necessarily close to each
other, the fields radiated by one do not necessarily cancel those of the other. Therefore, ideally, there
is a net radiation by the transmission-line system.

Ultimately the flared section of the transmission line can take the form shown in Figure 1.15(c).
This is the geometry of the widely used dipole antenna. Because of the standing wave current pattern,
it is also classified as a standing wave antenna (as contrasted to the traveling wave antennas which
will be discussed in detail in Chapter 10). If / < A, the phase of the current standing wave pattern in
each arm is the same throughout its length. In addition, spatially it is oriented in the same direction
as that of the other arm as shown in Figure 1.15(c). Thus the fields radiated by the two arms of the
dipole (vertical parts of a flared transmission line) will primarily reinforce each other toward most
directions of observation (the phase due to the relative position of each small part of each arm must
also be included for a complete description of the radiation pattern formation).

If the diameter of each wire is very small (d < A), the ideal standing wave pattern of the current
along the arms of the dipole is sinusoidal with a null at the end. However, its overall form depends
on the length of each arm. For center-fed dipoles with/ < A,/ =A/2,A/2 <l <)hand A <[ < 3)\/2,
the current patterns are illustrated in Figures 1.16(a—d). The current pattern of a very small dipole
(usually A/50 < I <A/10) can be approximated by a triangular distribution since sin(k//2) ~ kl/2
when kl/2 is very small. This is illustrated in Figure 1.16(a).

(a) << A

(b) 1=1/2

(0) AM2<I<h

(d) A<I<3A\/2

Figure 1.16  Current distribution on linear dipoles.
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Figure 1.17  Current distribution on a A/2 wire antenna for different times.

Because of its cyclical spatial variations, the current standing wave pattern of a dipole longer than
MI > M) undergoes 180° phase reversals between adjoining half-cycles. Therefore the current in all
parts of the dipole does not have the same phase. This is demonstrated graphically in Figure 1.16(d)
for A < [ < 3\/2. In turn, the fields radiated by some parts of the dipole will not reinforce those of
the others. As a result, significant interference and cancelling effects will be noted in the formation
of the total radiation pattern. See Figure 4.11 for the pattern of a A/2 dipole and Figure 4.7 for that
of a 1.25\ dipole.

For a time-harmonic varying system of radian frequency @ = 2zf, the current standing wave
patterns of Figure 1.16 represent the maximum current excitation for any time. The current variations,
as a function of time, on a A /2 center-fed dipole, are shown in Figure 1.17 for 0 <t < T/2 where T
is the period. These variations can be obtained by multiplying the current standing wave pattern of
Figure 1.16(b) by cos(wt).

1.5 HISTORICAL ADVANCEMENT

The history of antennas [12] dates back to James Clerk Maxwell who unified the theories of electric-
ity and magnetism, and eloquently represented their relations through a set of profound equations
best known as Maxwell’s Equations. His work was first published in 1873 [13]. He also showed
that light was electromagnetic and that both light and electromagnetic waves travel by wave distur-
bances of the same speed. In 1886, Professor Heinrich Rudolph Hertz demonstrated the first wireless
electromagnetic system. He was able to produce in his laboratory at a wavelength of 4 m a spark
in the gap of a transmitting A/2 dipole which was then detected as a spark in the gap of a nearby
loop. It was not until 1901 that Guglielmo Marconi was able to send signals over large distances.
He performed, in 1901, the first transatlantic transmission from Poldhu in Cornwall, England, to St.
John’s Newfoundland. His transmitting antenna consisted of 50 vertical wires in the form of a fan
connected to ground through a spark transmitter. The wires were supported horizontally by a guyed
wire between two 60-m wooden poles. The receiving antenna at St. John’s was a 200-m wire pulled
and supported by a kite. This was the dawn of the antenna era.

From Marconi’s inception through the 1940s, antenna technology was primarily centered on wire
related radiating elements and frequencies up to about UHF. It was not until World War II that modern
antenna technology was launched and new elements (such as waveguide apertures, horns, reflectors)
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were primarily introduced. Much of this work is captured in the book by Silver [14]. A contributing
factor to this new era was the invention of microwave sources (such as the klystron and magnetron)
with frequencies of 1 GHz and above.

While World War II launched a new era in antennas, advances made in computer architecture and
technology during the 1960s through the 1990s have had a major impact on the advance of modern
antenna technology, and they are expected to have an even greater influence on antenna engineer-
ing into the twenty-first century. Beginning primarily in the early 1960s, numerical methods were
introduced that allowed previously intractable complex antenna system configurations to be ana-
lyzed and designed very accurately. In addition, asymptotic methods for both low frequencies (e.g.,
Moment Method (MM), Finite-Difference, Finite-Element) and high frequencies (e.g., Geometrical
and Physical Theories of Diffraction) were introduced, contributing significantly to the maturity of
the antenna field. While in the past antenna design may have been considered a secondary issue in
overall system design, today it plays a critical role. In fact, many system successes rely on the design
and performance of the antenna. Also, while in the first half of this century antenna technology may
have been considered almost a “cut and try”” operation, today it is truly an engineering science. Anal-
ysis and design methods are such that antenna system performance can be predicted with remarkable
accuracy. In fact, many antenna designs proceed directly from the initial design stage to the prototype
without intermediate testing. The level of confidence has increased tremendously.

The widespread interest in antennas is reflected by the large number of books written on the
subject [15]. These have been classified under four categories: Fundamental, Handbooks, Measure-
ments, and Specialized. This is an outstanding collection of books, and it reflects the popularity of
the antenna subject, especially since the 1950s. Because of space limitations, only a partial list is
included here [2], [5], [7], [16]—-[39], including the first, second and third editions of this book in
1982, 1997, 2005. Some of other books are now out of print.

1.5.1 Antenna Elements

Prior to World War II most antenna elements were of the wire type (long wires, dipoles, helices,
rhombuses, fans, etc.), and they were used either as single elements or in arrays. During and after
World War 11, many other radiators, some of which may have been known for some and others of
which were relatively new, were put into service. This created a need for better understanding and
optimization of their radiation characteristics. Many of these antennas were of the aperture type
(such as open-ended waveguides, slots, horns, reflectors, lenses), and they have been used for com-
munication, radar, remote sensing, and deep space applications both on airborne and earth-based
platforms. Many of these operate in the microwave region and are discussed in Chapters 12, 13, 15
and in [40].

Prior to the 1950s, antennas with broadband pattern and impedance characteristics had band-
widths not much greater than about 2:1. In the 1950s, a breakthrough in antenna evolution was cre-
ated which extended the maximum bandwidth to as great as 40:1 or more. Because the geometries
of these antennas are specified by angles instead of linear dimensions, they have ideally an infinite
bandwidth. Therefore, they are referred to as frequency independent. These antennas are primarily
used in the 10—10,000 MHz region in a variety of applications including TV, point-to-point com-
munications, feeds for reflectors and lenses, and many others. This class of antennas is discussed in
more detail in Chapter 11 and in [41].

It was not until almost 20 years later that a fundamental new radiating element, which has received
alot of attention and many applications since its inception, was introduced. This occurred in the early
1970s when the microstrip or patch antennas was reported. This element is simple, lightweight,
inexpensive, low profile, and conformal to the surface. These antennas are discussed in more detail
in Chapter 14 and in [42].

Major advances in millimeter wave antennas have been made in recent years, including integrated
antennas where active and passive circuits are combined with the radiating elements in one compact
unit (monolithic form). These antennas are discussed in [43].
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Specific radiation pattern requirements usually cannot be achieved by single antenna elements,
because single elements usually have relatively wide radiation patterns and low values of directivity.
To design antennas with very large directivities, it is usually necessary to increase the electrical
size of the antenna. This can be accomplished by enlarging the electrical dimensions of the chosen
single element. However, mechanical problems are usually associated with very large elements. An
alternative way to achieve large directivities, without increasing the size of the individual elements,
is to use multiple single elements to form an array. An array is a sampled version of a very large
single element. In an array, the mechanical problems of large single elements are traded for the
electrical problems associated with the feed networks of arrays. However, with today’s solid-state
technology, very efficient and low-cost feed networks can be designed.

Arrays are the most versatile of antenna systems. They find wide applications not only in many
spaceborne systems, but in many earthbound missions as well. In most cases, the elements of an
array are identical; this is not necessary, but it is often more convenient, simpler, and more practical.
With arrays, it is practical not only to synthesize almost any desired amplitude radiation pattern, but
the main lobe can be scanned by controlling the relative phase excitation between the elements. This
is most convenient for applications where the antenna system is not readily accessible, especially
for spaceborne missions. The beamwidth of the main lobe along with the side lobe level can be
controlled by the relative amplitude excitation (distribution) between the elements of the array. In
fact, there is a trade-off between the beamwidth and the side lobe level based on the amplitude
distribution. Analysis, design, and synthesis of arrays are discussed in Chapters 6 and 7. However,
advances in array technology are reported in [44]—-[48].

A new antenna array design referred to as smart antenna, based on basic technology of the 1970s
and 1980s, is sparking interest especially for wireless applications. This antenna design, which com-
bines antenna technology with that of digital signal processing (DSP), is discussed in some detail in
Chapter 16.

1.5.2 Methods of Analysis

There is plethora of antenna elements, many of which exhibit intricate configurations. To analyze
each as a boundary-value problem and obtain solutions in closed form, the antenna structure must
be described by an orthogonal curvilinear coordinate system. This places severe restrictions on the
type and number of antenna systems that can be analyzed using such a procedure. Therefore, other
exact or approximate methods are often pursued. Two methods that in the last four decades have
been preeminent in the analysis of many previously intractable antenna problems are the Integral
Equation (IE) method and the Geometrical Theory of Diffraction (GTD).

The Integral Equation method casts the solution to the antenna problem in the form of an integral
(hence its name) where the unknown, usually the induced current density, is part of the integrand.
Numerical techniques, such as the Moment Method (MM), are then used to solve for the unknown.
Once the current density is found, the radiation integrals of Chapter 3 are used to find the fields
radiated and other systems parameters. This method is most convenient for wire-type antennas and
more efficient for structures that are small electrically. One of the first objectives of this method is to
formulate the IE for the problem at hand. In general, there are two type of IE’s. One is the Electric
Field Integral Equation (EFIE), and it is based on the boundary condition of the total tangential
electric field. The other is the Magnetic Field Integral Equation (MFIE), and it is based on the
boundary condition that expresses the total electric current density induced on the surface in terms of
the incident magnetic field. The MFIE is only valid for closed surfaces. For some problems, it is more
convenient to formulate an EFIE, while for others it is more appropriate to use an MFIE. Advances,
applications, and numerical issues of these methods are addressed in Chapter 8 and in [3] and [49].

When the dimensions of the radiating system are many wavelengths, low-frequency methods are
not as computationally efficient. However, high-frequency asymptotic techniques can be used to
analyze many problems that are otherwise mathematically intractable. One such method that has
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received considerable attention and application over the years is the GTD/UTD, which is an exten-
sion of geometrical optics (GO), and it overcomes some of the limitations of GO by introducing a
diffraction mechanism. The Geometrical/Uniform Theory of Diffraction is briefly discussed in Sec-
tion 12.10. However, a detailed treatment is found in Chapter 13 of [3] while recent advances and
applications are found in [50] and [51].

For structures that are not convenient to analyze by either of the two methods, a combination of
the two is often used. Such a technique is referred to as a hybrid method, and it is described in detail
in [52]. Another method, which has received a lot of attention in scattering, is the Finite-Difference
Time-Domain (FDTD). This method has also been applied to antenna radiation problems [53]—[57].
A method that has gained a lot of momentum in its application to antenna problems is the Finite
Element Method [58]-[63].

1.5.3 Some Future Challenges

Antenna engineering has enjoyed a very successful period during the 1940s—1990s. Responsible for
its success have been the introduction and technological advances of some new elements of radiation,
such as aperture antennas, reflectors, frequency independent antennas, and microstrip antennas.
Excitement has been created by the advancement, utilization, and proliferation of Computational
ElectoMagentics (CEM) software that provides students, engineers, and scientists with versatile
and indispensable tools for modeling, visualizing, animating, and interpreting EM phenomena and
characteristics. In addition, with such tools, electrically large structures that are complex and may
otherwise be intractable can be designed and analyzed to gain insight into the performance of systems
in order to advance and improve their efficiency. Today, antenna engineering is a science based on
fundamental principles.

Although a certain level of maturity has been attained, there are many challenging opportunities
and problems to be solved. Phased array architecture integrating monolithic MIC technology is still a
most challenging problem. Integration of new materials, such as metamaterials [64], artificial mag-
netic conductors and soft/hard surfaces [65], into antenna technology offers many opportunities to
control, discipline, harness and manipulate the EM waves to design devices with desired and funtional
characteristics, and improved performance. Computational electromagnetics using supercomputing
and parallel computing capabilities will model complex electromagnetic wave interactions, in both
the frequency and time domains. Innovative antenna designs, such as those using smart antennas [66],
and multifunction, multiband, ultra wide hand, reconfigurable antennas and antenna systems [67],
to perform complex and demanding system functions remain a challenge. New basic elements are
always welcomed and offer refreshing opportunities. New applications include, but are not limited
to nanotechnology, wireless communications, direct broadcast satellite systems, global positioning
satellites (GPS), high-accuracy airborne navigation, security systems, global weather, earth resource
systems, and others. Because of the many new applications, the lower portion of the EM spectrum
has been saturated and the designs have been pushed to higher frequencies, including the millimeter
wave and terahertz frequency bands.

1.6 MULTIMEDIA

In the publisher’s website for this book, the following multimedia resources related to this chapter
are included:

a. Java-based interactive questionnaire with answers.
b. Three Matlab-based animation-visualization programs designated
* tm_open
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* tm_box
e te_horn

which are described in detail in Section 1.3.4 and the corresponding READ ME file in the book
website.

c. Power Point (PPT) viewgraphs.
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CHAPTER 2
EEEEEEEEEEE

Fundamental Parameters and Figures-of-Merit of
Antennas

2.1 INTRODUCTION

To describe the performance of an antenna, definitions of various parameters are necessary. Some
of the parameters are interrelated and not all of them need be specified for complete description
of the antenna performance. Parameter definitions will be given in this chapter. Many of those in
quotation marks are from the IEEE Standard Definitions of Terms for Antennas [IEEE Std 145-1993.
Reaffirmed 2004(R2004)]. This is a revision of the IEEE Std 145-1983.*

2.2 RADIATION PATTERN

An antenna radiation pattern or antenna pattern is defined as “a mathematical function or a graph-
ical representation of the radiation properties of the antenna as a function of space coordinates. In
most cases, the radiation pattern is determined in the far-field region and is represented as a function
of the directional coordinates. Radiation properties include power flux density, radiation intensity,
field strength, directivity, phase or polarization.” The radiation property of most concern is the two-
or three-dimensional spatial distribution of radiated energy as a function of the observer’s position
along a path or surface of constant radius. A convenient set of coordinates is shown in Figure 2.1.
A trace of the received electric (magnetic) field at a constant radius is called the amplitude field
pattern. On the other hand, a graph of the spatial variation of the power density along a constant
radius is called an amplitude power pattern.

Often the field and power patterns are normalized with respect to their maximum value, yielding
normalized field and power patterns. Also, the power pattern is usually plotted on a logarithmic scale
or more commonly in decibels (dB). This scale is usually desirable because a logarithmic scale can
accentuate in more details those parts of the pattern that have very low values, which later we will
refer to as minor lobes. For an antenna, the

a. field pattern (in linear scale) typically represents a plot of the magnitude of the electric or
magnetic field as a function of the angular space.

*IEEE Transactions on Antennas and Propagation, Vols. AP-17, No. 3, May 1969; Vol. AP-22, No. 1, January 1974; and
Vol. AP-31, No. 6, Part II, November 1983.

Antenna Theory: Analysis and Design, Fourth Edition. Constantine A. Balanis.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/antennatheory4e
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Figure 2.1 Coordinate system for antenna analysis.

b. power pattern (in linear scale) typically represents a plot of the square of the magnitude of the
electric or magnetic field as a function of the angular space.

c. power pattern (in dB) represents the magnitude of the electric or magnetic field, in decibels,
as a function of the angular space.

To demonstrate this, the two-dimensional normalized field pattern (plotted in linear scale), power
pattern (plotted in linear scale), and power pattern (plotted on a logarithmic dB scale) of a 10-
element linear antenna array of isotropic sources, with a spacing of d = 0.25A between the elements,
are shown in Figure 2.2. In this and subsequent patterns, the plus (+) and minus (—) signs in the lobes
indicate the relative polarization (positive or negative) of the amplitude between the various lobes,
which changes (alternates) as the nulls are crossed. To find the points where the pattern achieves its
half-power (-3 dB points), relative to the maximum value of the pattern, you set the value of the

a. field pattern at 0.707 value of its maximum, as shown in Figure 2.2(a)
b. power pattern (in a linear scale) at its 0.5 value of its maximum, as shown in Figure 2.2(b)

c. power pattern (in dB) at =3 dB value of its maximum, as shown in Figure 2.2(c).

All three patterns yield the same angular separation between the two half-power points, 38.64°, on
their respective patterns, referred to as HPBW and illustrated in Figure 2.2. This is discussed in detail
in Section 2.5.

In practice, the three-dimensional pattern is measured and recorded in a series of two-dimensional
patterns. However, for most practical applications, a few plots of the pattern as a function of 8 for
some particular values of ¢, plus a few plots as a function of ¢ for some particular values of 6, give
most of the useful and needed information.

2.2.1 Radiation Pattern Lobes

Various parts of a radiation pattern are referred to as lobes, which may be subclassified into major
or main, minor, side, and back lobes.
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Figure 2.2 Two-dimensional normalized field pattern (linear scale), power pattern (linear scale), and power
pattern (in dB) of a 10-element linear array with a spacing of d = 0.25\.

A radiation lobe is a “portion of the radiation pattern bounded by regions of relatively weak
radiation intensity.” Figure 2.3(a) demonstrates a symmetrical three-dimensional polar pattern with
a number of radiation lobes. Some are of greater radiation intensity than others, but all are classified
as lobes. Figure 2.3(b) illustrates a linear two-dimensional pattern [one plane of Figure 2.3(a)] where
the same pattern characteristics are indicated.
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Figure 2.3 (a) Radiation lobes and beamwidths of an antenna amplitude pattern in polar form. (b) Linear plot
of power pattern and its associated lobes and beamwidths.

MATLAB-based computer programs, designated as Polar and Spherical, have been developed
and are included in the publisher’s website for this book. These programs can be used to plot the two-
dimensional patterns, both polar and semipolar (in linear and dB scales), in polar form and spherical
three-dimensional patterns (in linear and dB scales). A description of these programs is found in the
publisher’s website for this book. Other programs that have been developed for plotting rectangular
and polar plots are those of [1]—[3].

A major lobe (also called main beam) is defined as “the radiation lobe containing the direction
of maximum radiation.” In Figure 2.3 the major lobe is pointing in the § = 0 direction. In some
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Figure 2.4 Normalized three-dimensional amplitude field pattern (in linear scale) of a 10-element linear array
antenna with a uniform spacing of d = 0.25\ and progressive phase shift # = —0.6z between the elements.

antennas, such as split-beam antennas, there may exist more than one major lobe. A minor lobe
is any lobe except a major lobe. In Figures 2.3(a) and (b) all the lobes with the exception of the
major can be classified as minor lobes. A side lobe is “a radiation lobe in any direction other than
the intended lobe.” (Usually a side lobe is adjacent to the main lobe and occupies the hemisphere
in the direction of the main beam.) A back lobe is “a radiation lobe whose axis makes an angle of
approximately 180° with respect to the beam of an antenna.” Usually it refers to a minor lobe that
occupies the hemisphere in a direction opposite to that of the major (main) lobe.

Minor lobes usually represent radiation in undesired directions, and they should be minimized.
Side lobes are normally the largest of the minor lobes. The level of minor lobes is usually expressed
as a ratio of the power density in the lobe in question to that of the major lobe. This ratio is often
termed the side lobe ratio or side lobe level. Side lobe levels of —20 dB or smaller are usually not
desirable in most applications. Attainment of a side lobe level smaller than —30 dB usually requires
very careful design and construction. In most radar systems, low side lobe ratios are very important
to minimize false target indications through the side lobes.

A normalized three-dimensional far-field amplitude pattern, plotted on a linear scale, of a 10-
element linear antenna array of isotropic sources with a spacing of d = 0.25A and progressive phase
shift f§ = —0.67, between the elements is shown in Figure 2.4. It is evident that this pattern has one
major lobe, five minor lobes and one back lobe. The level of the side lobe is about —9 dB relative to
the maximum. A detailed presentation of arrays is found in Chapter 6. For an amplitude pattern of an
antenna, there would be, in general, three electric-field components (E,., Ey, Ed,) at each observation
point on the surface of a sphere of constant radius r = r,, as shown in Figure 2.1. In the far field,
the radial E, component for all antennas is zero or vanishingly small compared to either one, or
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Figure 2.5 Principal E- and H-plane patterns for a pyramidal horn antenna.

both, of the other two components (see Section 3.6 of Chapter 3). Some antennas, depending on
their geometry and also observation distance, may have only one, two, or all three components. In

general, the magnitude of the total electric field would be |E| = \/ |E,|> + |Eg|? + |E,|?. The radial
distance in Figure 2.4, and similar ones, represents the magnitude of |E|.

2.2.2 Isotropic, Directional, and Omnidirectional Patterns

An isotropic radiator is defined as “a hypothetical lossless antenna having equal radiation in all direc-
tions.” Although it is ideal and not physically realizable, it is often taken as a reference for express-
ing the directive properties of actual antennas. A directional antenna is one “having the property
of radiating or receiving electromagnetic waves more effectively in some directions than in others.
This term is usually applied to an antenna whose maximum directivity is significantly greater than
that of a half-wave dipole.” Examples of antennas with directional radiation patterns are shown in
Figures 2.5 and 2.6. It is seen that the pattern in Figure 2.6 is nondirectional in the azimuth plane
[f(¢), 0 = = /2] and directional in the elevation plane [g(0), ¢ = constant]. This type of a pattern is
designated as omnidirectional, and it is defined as one “having an essentially nondirectional pattern
in a given plane (in this case in azimuth) and a directional pattern in any orthogonal plane (in this
case in elevation).” An omnidirectional pattern is then a special type of a directional pattern.

2.2.3 Principal Patterns

For a linearly polarized antenna, performance is often described in terms of its principal E- and
H-plane patterns. The E-plane is defined as “the plane containing the electric-field vector and the
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Figure 2.6 Omnidirectional antenna pattern.

direction of maximum radiation,” and the H-plane as “the plane containing the magnetic-field vec-
tor and the direction of maximum radiation.” Although it is very difficult to illustrate the principal
patterns without considering a specific example, it is the usual practice to orient most antennas so
that at least one of the principal plane patterns coincide with one of the geometrical principal planes.
An illustration is shown in Figure 2.5. For this example, the x-z plane (elevation plane; ¢ = 0) is
the principal E-plane and the x-y plane (azimuthal plane; 6 = z/2) is the principal H-plane. Other
coordinate orientations can be selected.

The omnidirectional pattern of Figure 2.6 has an infinite number of principal E-planes (elevation
planes; ¢ = ¢,) and one principal H-plane (azimuthal plane; 8 = 90°).

2.2.4 Field Regions

The space surrounding an antenna is usually subdivided into three regions: (a) reactive near-field,
(b) radiating near-field (Fresnel) and (c) far-field (Fraunhofer) regions as shown in Figure 2.7. These
regions are so designated to identify the field structure in each. Although no abrupt changes in the
field configurations are noted as the boundaries are crossed, there are distinct differences among
them. The boundaries separating these regions are not unique, although various criteria have been
established and are commonly used to identify the regions.

Reactive near-field region is defined as “that portion of the near-field region immediately
surrounding the antenna wherein the reactive field predominates.” For most antennas, the outer
boundary of this region is commonly taken to exist at a distance R < 0.624/D3 /A from the antenna
surface, where A is the wavelength and D is the largest dimension of the antenna. “For a very short
dipole, or equivalent radiator, the outer boundary is commonly taken to exist at a distance A/2x
from the antenna surface.”

Radiating near-field (Fresnel) region is defined as “that region of the field of an antenna between
the reactive near-field region and the far-field region wherein radiation fields predominate and
wherein the angular field distribution is dependent upon the distance from the antenna. If the
antenna has a maximum dimension that is not large compared to the wavelength, this region may
not exist. For an antenna focused at infinity, the radiating near-field region is sometimes referred to
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as the Fresnel region on the basis of analogy to optical terminology. If the antenna has a maximum
overall dimension which is very small compared to the wavelength, this field region may not exist.”
The inner boundary is taken to be the distance R > 0.624/D3 /A and the outer boundary the distance
R < 2D? /) where D is the largest* dimension of the antenna. This criterion is based on a maximum
phase error of z/8. In this region the field pattern is, in general, a function of the radial distance
and the radial field component may be appreciable.

Far-field (Fraunhofer) region is defined as “that region of the field of an antenna where the angu-
lar field distribution is essentially independent of the distance from the antenna. If the antenna has a
maximum? overall dimension D, the far-field region is commonly taken to exist at distances greater
than 2D? /A from the antenna, A being the wavelength. The far-field patterns of certain antennas, such
as multibeam reflector antennas, are sensitive to variations in phase over their apertures. For these
antennas 2D? /A may be inadequate. In physical media, if the antenna has a maximum overall dimen-
sion, D, which is large compared to 7 /|y|, the far-field region can be taken to begin approximately at
a distance equal to |y |D?/z from the antenna, y being the propagation constant in the medium. For an
antenna focused at infinity, the far-field region is sometimes referred to as the Fraunhofer region on
the basis of analogy to optical terminology.” In this region, the field components are essentially trans-
verse and the angular distribution is independent of the radial distance where the measurements are
made. The inner boundary is taken to be the radial distance R = 2D? /A and the outer one at infinity.

The amplitude pattern of an antenna, as the observation distance is varied from the reactive near
field to the far field, changes in shape because of variations of the fields, both magnitude and phase. A
typical progression of the shape of an antenna, with the largest dimension D, is shown in Figure 2.8.

*To be valid, D must also be large compared to the wavelength (D > A).
To be valid, D must also be large compared to the wavelength (D > A).
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Figure 2.8 Typical changes of antenna amplitude pattern shape from reactive near field toward the far field.
(SOURCE: Y. Rahmat-Samii, L. I. Williams, and R. G. Yoccarino, The UCLA Bi-polar Planar-Near-Field
Antenna Measurement and Diagnostics Range,” IEEE Antennas & Propagation Magazine, Vol. 37, No. 6,
December 1995 (© 1995 IEEE).

It is apparent that in the reactive near-field region the pattern is more spread out and nearly uniform,
with slight variations. As the observation is moved to the radiating near-field region (Fresnel), the
pattern begins to smooth and form lobes. In the far-field region (Fraunhofer), the pattern is well
formed, usually consisting of few minor lobes and one, or more, major lobes.

To illustrate the pattern variation as a function of radial distance beyond the minimum 2D? /)
far-field distance, in Figure 2.9 we have included three patterns of a parabolic reflector calculated
at distances of R = 2D?/\,4D? /), and infinity [4]. It is observed that the patterns are almost iden-
tical, except for some differences in the pattern structure around the first null and at a level below
25 dB. Because infinite distances are not realizable in practice, the most commonly used criterion
for minimum distance of far-field observations is 2D? /A.

2.2.5 Radian and Steradian

The measure of a plane angle is a radian. One radian is defined as the plane angle with its vertex at
the center of a circle of radius r that is subtended by an arc whose length is r. A graphical illustration
is shown in Figure 2.10(a). Since the circumference of a circle of radius r is C = 2z, there are 2z
rad (2zr/r) in a full circle.

The measure of a solid angle is a steradian. One steradian is defined as the solid angle with its
vertex at the center of a sphere of radius r that is subtended by a spherical surface area equal to that
of a square with each side of length r. A graphical illustration is shown in Figure 2.10(b). Since the
area of a sphere of radius r is A = 4772, there are 4z sr (477 /r?) in a closed sphere.

The infinitesimal area dA on the surface of a sphere of radius r, shown in Figure 2.1, is given by

dA =r?sin0dodp (m?) (2-1)
Therefore, the element of solid angle dQ of a sphere can be written as

dQ = d—;‘ =sinfdfd¢ (sr) (2-2)

I%
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Figure 2.9 Calculated radiation patterns of a paraboloid antenna for different distances from the antenna.

(soURck: J. S. Hollis, T. J. Lyon, and L. Clayton, Jr. (eds.), Microwave Antenna Measurements, Scientific-
Atlanta, Inc., July 1970).
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Figure 2.10  Geometrical arrangements for defining a radian and a steradian.
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Example 2.1

For a sphere of radius r, find the solid angle Q, (in square radians or steradians) of a spheri-
cal cap on the surface of the sphere over the north-pole region defined by spherical angles of
0 <6 <30°0 < ¢ <360°. Refer to Figures 2.1 and 2.10. Do this

a. exactly.

b. using Q, = AO®; - A®,, where A®; and A®, are two perpendicular angular separations of
the spherical cap passing through the north pole.

Compare the two.
Solution:

a. Using (2-2), we can write that

360° 30° 2n  prr/6 2 /6
QA=/ / dQ:/ / sin9d0d¢=/ d¢>/ sin 6 dO
0 0 0 0 0 0

= 2[—cos 01|/ = 22[~0.867 + 1] = 2x(0.133) = 0.83566
AO;=AO 2
b Q ~ AG, - AO, —a (AO,) = z (%) = % = 1.09662

It is apparent that the approximate beam solid angle is about 31.23% in error.

2.3 RADIATION POWER DENSITY

Electromagnetic waves are used to transport information through a wireless medium or a guiding
structure, from one point to the other. It is then natural to assume that power and energy are associated
with electromagnetic fields. The quantity used to describe the power associated with an electromag-
netic wave is the instantaneous Poynting vector defined as

W =EXH (2-3)

W = instantaneous Poynting vector (W/m?)
& = instantaneous electric-field intensity  (V/m)

J = instantaneous magnetic-field intensity (A/m)

Note that script letters are used to denote instantaneous fields and quantities, while roman letters are
used to represent their complex counterparts.

Since the Poynting vector is a power density, the total power crossing a closed surface can be
obtained by integrating the normal component of the Poynting vector over the entire surface. In

equation form
gszéf‘zy.ds:ﬂw-ﬁda (2-4)
S S
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9P = instantaneous total power (W)

1l = unit vector normal to the surface

da = infinitesimal area of the closed surface (m?)

For applications of time-varying fields, it is often more desirable to find the average power density
which is obtained by integrating the instantaneous Poynting vector over one period and dividing by
the period. For time-harmonic variations of the form e/, we define the complex fields E and H
which are related to their instantaneous counterparts & and # by

&(x,y,2;1) = Re[E(x, y, 2)e/™] (2-5)
H(x,y,z,1) = Re[H(x, y, 2)e/"] (2-6)

Using the definitions of (2-5) and (2-6) and the identity Re[Ee/®'] = %[Ee/“” + E*e7®!], (2-3) can
be written as

W =& x H = iRe[E x H'] + 1Re[E x He/™'] (2-7)

The first term of (2-7) is not a function of time, and the time variations of the second are twice the
given frequency. The time average Poynting vector (average power density) can be written as

W (5,3,2) = [ (5,5, )]gy = sR[EXH*] | (W/m?) (2-8)

The % factor appears in (2-7) and (2-8) because the E and H fields represent peak values, and it
should be omitted for RMS values.

A close observation of (2-8) may raise a question. If the real part of (E X H*)/2 represents the
average (real) power density, what does the imaginary part of the same quantity represent? At this
point it will be very natural to assume that the imaginary part must represent the reactive (stored)
power density associated with the electromagnetic fields. In later chapters, it will be shown that
the power density associated with the electromagnetic fields of an antenna in its far-field region is
predominately real and will be referred to as radiation density.

Based upon the definition of (2-8), the average power radiated by an antenna (radiated power)

can be written as
Paa=Py = #Wrad -ds = #Wav'ﬁda
S S

% Re(E x H*) - ds

N

(2-9)

N =

The power pattern of the antenna, whose definition was discussed in Section 2.2, is just a measure,
as a function of direction, of the average power density radiated by the antenna. The observations are
usually made on a large sphere of constant radius extending into the far field. In practice, absolute
power patterns are usually not desired. However, the performance of the antenna is measured in
terms of the gain (to be discussed in a subsequent section) and in terms of relative power patterns.
Three-dimensional patterns cannot be measured, but they can be constructed with a number of two-
dimensional cuts.
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Example 2.2
The radial component of the radiated power density of an antenna is given by

A ~ , sinf
Woag =8, W, = 8,40~ (W/m?)

where A, is the peak value of the power density, € is the usual spherical coordinate, and 4,. is the
radial unit vector. Determine the total radiated power.

Solution: For a closed surface, a sphere of radius r is chosen. To find the total radiated power,
the radial component of the power density is integrated over its surface. Thus

Prag = %Wrad -fda
S

o sin 0
- / / (ﬁ,AO—2 ) (@, sin0dodg) = 1A, (W)
0 0 r

A three-dimensional normalized plot of the average power density at a distance of r = 1 m is
shown in Figure 2.6.

An isotropic radiator is an ideal source that radiates equally in all directions. Although it does not
exist in practice, it provides a convenient isotropic reference with which to compare other antennas.
Because of its symmetric radiation, its Poynting vector will not be a function of the spherical coordi-
nate angles 6 and ¢. In addition, it will have only a radial component. Thus the total power radiated
by it is given by

2 4
Prg = ﬂ W, -ds = /0 /0 [4, Wy(r)] - [4,7° sin 6 dO d] = 4xr*W,, (2-10)
s

and the power density by

P,
W,=4aW,=4a, <4,$dz> (W/m?) (2-11)

which is uniformly distributed over the surface of a sphere of radius r.
2.4 RADIATION INTENSITY
Radiation intensity in a given direction is defined as “the power radiated from an antenna per unit

solid angle.” The radiation intensity is a far-field parameter, and it can be obtained by simply mul-
tiplying the radiation density by the square of the distance. In mathematical form it is expressed as

U=rW,, (2-12)

where
U = radiation intensity (W/unit solid angle)
W,,q = radiation density (W/m?)
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The radiation intensity is also related to the far-zone electric field of an antenna, referring to
Figure 2.4, by

2 2
U, ¢) = ;—nIE(r,H,rb)Iz = ;—n [1Ep(r. 0. ) + |Ey(r. 0. $)|?]

1 . , (2-12a)
= 5o [1Es0. 00 + 150, )]
where

e—jkr

E(r, 0, ¢) = far-zone electric-field intensity of the antenna = E°(0, ¢)
Ey, E 4 = far-zone electric-field components of the antenna

n = intrinsic impedance of the medium

The radial electric-field component (E,) is assumed, if present, to be small in the far zone. Thus the
power pattern is also a measure of the radiation intensity.

The total power is obtained by integrating the radiation intensity, as given by (2-12), over the
entire solid angle of 4. Thus

2z T
Prad=ﬂUd9=/0 /0 Usin0d0 dg (2-13)
Q

where dQ = element of solid angle = sin 8 d0 d¢.

Example 2.3

For the problem of Example 2.2, find the total radiated power using (2-13).
Solution: Using (2-12)

U=r’W,y=A,sin6

and by (2-13)

2r y 3 2r p 3
Prad=/0 /0 Usin9d9d¢>=A0/O /0 sin® 6 d0 dp = n*A,

which is the same as that obtained in Example 2.2. A three-dimensional plot of the relative radi-
ation intensity is also represented by Figure 2.6.

For an isotropic source U will be independent of the angles 6 and ¢, as was the case for W,,.
Thus (2-13) can be written as

Prad:ﬂUOdQ: Uoﬂ dQ=47[U0 (2-14)

Q Q
or the radiation intensity of an isotropic source as

P
Uy = L{;d (2-15)
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Figure 2.11  Three- and two-dimensional power patterns (in linear scale) of U(6) = cos?(0) cos*(36).
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Associated with the pattern of an antenna is a parameter designated as beamwidth. The beamwidth
of a pattern is defined as the angular separation between two identical points on opposite side of
the pattern maximum. In an antenna pattern, there are a number of beamwidths. One of the most
widely used beamwidths is the Half-Power Beamwidth (HPBW), which is defined by IEEE as: “In
a plane containing the direction of the maximum of a beam, the angle between the two directions
in which the radiation intensity is one-half value of the beam.” This is demonstrated in Figure 2.2.
Another important beamwidth is the angular separation between the first nulls of the pattern, and it
is referred to as the First-Null Beamwidth (FNBW). Both the HPBW and FNBW are demonstrated
for the pattern in Figure 2.11 for the pattern of Example 2.4. Other beamwidths are those where the
pattern is —10 dB from the maximum, or any other value. However, in practice, the term beamwidth,
with no other identification, usually refers to HPBW.

The beamwidth of an antenna is a very important figure of merit and often is used as a trade-off
between it and the side lobe level; that is, as the beamwidth decreases, the side lobe increases and vice
versa. In addition, the beamwidth of the antenna is also used to describe the resolution capabilities of
the antenna to distinguish between two adjacent radiating sources or radar targets. The most common
resolution criterion states that the resolution capability of an antenna to distinguish between two
sources is equal to half the first-null beamwidth (FNBW/2), which is usually used to approximate the
half-power beamwidth (HPBW) [5], [6]. That is, two sources separated by angular distances equal
or greater than FNBW/2 ~ HPBW of an antenna with a uniform distribution can be resolved. If the
separation is smaller, then the antenna will tend to smooth the angular separation distance.

Example 2.4
The normalized radiation intensity of an antenna is represented by

U(0) = cos?(0) cos>(30), (0<0<90°, 0°< ¢ <360°)

The three- and two-dimensional plots of this, plotted in a linear scale, are shown in Figure 2.11.
Find the

a. half-power beamwidth HPBW (in radians and degrees)
b. first-null beamwidth FNBW (in radians and degrees)

Solution:

a. Since the U(0) represents the power pattern, to find the half-power beamwidth you set the
function equal to half of its maximum, or

U(0)lg=g, = c0s*(6) cos*(30)| g, = 0.5 = cos 6, cos 36, = 0.707
6, = cos~! (0107
cos 36,

Since this is an equation with transcendental functions, it can be solved iteratively. After a
few iterations, it is found that

0, ~ 0.25 radians = 14.325°
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Since the function U(0) is symmetrical about the maximum at 6 = 0, then the HPBW is
HPBW = 20, ~ 0.50 radians = 28.65°
b. To find the first-null beamwidth (FNBW), you set the U(6) equal to zero, or
U(0)|p=g, = cos*(0) cos*(30)|g—p =0
This leads to two solutions for 6,,.
cosf, =0 =6, =cos™1(0) = % radians = 90°
cos36,=0=>6, = %005_1(0) = % radians = 30°

The one with the smallest value leads to the FNBW. Again, because of the symmetry of
the pattern, the FNBW is

FENBW =26, = % radians = 60°

2.6 DIRECTIVITY

In the 1983 version of the IEEE Standard Definitions of Terms for Antennas, there has been a substan-
tive change in the definition of directivity, compared to the definition of the 1973 version. Basically
the term directivity in the new 1983 version has been used to replace the term directive gain of the
old 1973 version. In the new 1983 version the term directive gain has been deprecated. According to
the authors of the new 1983 standards, “this change brings this standard in line with common usage
among antenna engineers and with other international standards, notably those of the International
Electrotechnical Commission (IEC).” Therefore directivity of an antenna defined as “the ratio of the
radiation intensity in a given direction from the antenna to the radiation intensity averaged over all
directions. The average radiation intensity is equal to the total power radiated by the antenna divided
by 4x. If the direction is not specified, the direction of maximum radiation intensity is implied.”
Stated more simply, the directivity of a nonisotropic source is equal to the ratio of its radiation inten-
sity in a given direction over that of an isotropic source. In mathematical form, using (2-15), it can
be written as

D= E _ dzU
UO Prad

(2-16)

If the direction is not specified, it implies the direction of maximum radiation intensity (maximum
directivity) expressed as

U U, 4z U,
Dmax — DO - |max — max — 4 max (2-163)

rad
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D = directivity (dimensionless)
Dy = maximum directivity (dimensionless)
U = radiation intensity (W/unit solid angle)
Unax

U, = radiation intensity of isotropic source (W/unit solid angle)

= maximum radiation intensity (W/unit solid angle)

P4 = total radiated power (W)

For an isotropic source, it is very obvious from (2-16) or (2-16a) that the directivity is unity since
U, U, and U, are all equal to each other.

For antennas with orthogonal polarization components, we define the partial directivity of an
antenna for a given polarization in a given direction as “that part of the radiation intensity corre-
sponding to a given polarization divided by the total radiation intensity averaged over all directions.”
With this definition for the partial directivity, then in a given direction “the total directivity is the sum
of the partial directivities for any two orthogonal polarizations.” For a spherical coordinate system,
the total maximum directivity Dy, for the orthogonal # and ¢ components of an antenna can be writ-
ten as

while the partial directivities Dy and Dy, are expressed as

47TU9
) = 0 (2-17a)
(Prad)ﬂ + (Prad)d)
D 47Uy (2-17b)
¢ (Prad)ﬁ + (Prad)(i)

where

U, = radiation intensity in a given direction contained in 6 field component
U, = radiation intensity in a given direction contained in ¢ field component
(P,,q)p = radiated power in all directions contained in € field component
rad/60 p p

(Praq)g = radiated power in all directions contained in ¢ field component

Example 2.5

As an illustration, find the maximum directivity of the antenna whose radiation intensity is that
of Example 2.2. Write an expression for the directivity as a function of the directional angles 60
and ¢.

Solution: The radiation intensity is given by

U=r*W,y=Agsinf
The maximum radiation is directed along 6 = 7 /2. Thus

U,

max

=A0



DIRECTIVITY 43

In Example 2.2 it was found that
Prg = 7[2A0
Using (2-16a), we find that the maximum directivity is equal to

47U, 4
Dy= —==—=127
Prad 4
Since the radiation intensity is only a function of 6, the directivity as a function of the directional
angles is represented by

D = Dgysin@ = 1.27sin 6

Before proceeding with a more general discussion of directivity, it may be proper at this time
to consider another example, compute its directivity, compare it with that of the previous example,
and comment on what it actually represents. This may give the reader a better understanding and
appreciation of the directivity.

Example 2.6

The radial component of the radiated power density of an infinitesimal linear dipole of length
[ < \is given by

sin® 0
2

W,, =4, W, =4A, (W/m?)

where A is the peak value of the power density, 6 is the usual spherical coordinate, and a,. is the
radial unit vector. Determine the maximum directivity of the antenna and express the directivity
as a function of the directional angles 6 and ¢.

Solution: The radiation intensity is given by

U=r*W, =A,sin* 0

The maximum radiation is directed along 6 = 7 /2. Thus

The total radiated power is given by

2 b4 8
PradzﬂUdngo/o /0 sin? 05in0 0 dp = Ao (=)
Q

Using (2-16a), we find that the maximum directivity is equal to

D, = 47;UmaX _ 4rA
rad

_3
8x )
—(A
3(o)
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which is greater than 1.27 found in Example 2.5. Thus the directivity is represented by

D = Dysin’ 0 = 1.5sin’ 0

At this time it will be proper to comment on the results of Examples 2.5 and 2.6. To better understand
the discussion, we have plotted in Figure 2.12 the relative radiation intensities of Example 2.5 (U =
Agsin 0) and Example 2.6 (U = A, sin® 6) where Ao was set equal to unity. We see that both patterns
are omnidirectional but that of Example 2.6 has more directional characteristics (is narrower) in
the elevation plane. Since the directivity is a “figure of merit” describing how well the radiator
directs energy in a certain direction, it should be convincing from Figure 2.12 that the directivity of
Example 2.6 should be higher than that of Example 2.5.

To demonstrate the significance of directivity, let us consider another example; in particular let
us examine the directivity of a half-wavelength dipole (I = A/2), which is derived in Section 4.6 of
Chapter 4 and can be approximated by

D = Dy sin® 6 = 1.67sin’ 0 (2-18)

since it can be shown that [see Figure 4.12(b)]

2
cos (E cos 0)
2

sint @ o | —=— 2 (2-18a)
sin 0

where 0 is measured from the axis along the length of the dipole. The values represented by (2-
18) and those of an isotropic source (D = 1) are plotted two- and three-dimensionally in Fig-
ure 2.13(a,b). For the three-dimensional graphical representation of Figure 2.13(b), at each obser-
vation point only the largest value of the two directivities is plotted. It is apparent that when

y

Figure 2.12  Three-dimensional radiation intensity patterns. (SOURCE: P. Lorrain and D. R. Corson, Electro-
magnetic Fields and Waves, 2nd ed., W. H. Freeman and Co. Copyright (©) 1970).
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D (isotropic)=1 Directivity
(dimensionless)
57.44° 1.8
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1.6
1.4
12

1
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0.6
0.4
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122.56°
180°
(a) Two-dimensional
Directivity
(dimensionless)
2
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o BRSNS
. NN
D=1.67sin3(0) ) A o, =‘-“““‘\ Ny

(b) Three-dimensional

Figure2.13  Two- and three-dimensional directivity patterns of aA/2 dipole. (SOURCE: C. A. Balanis, “Antenna
Theory: A Review.” Proc. IEEE, Vol. 80, No. 1. January 1992. © 1992 IEEE).

sin!(1 /1.67)1/3 = 57.44° < 9 < 122.56°, the dipole radiator has greater directivity (greater inten-
sity concentration) in those directions than that of an isotropic source. Outside this range of angles,
the isotropic radiator has higher directivity (more intense radiation). The maximum directivity of
the dipole (relative to the isotropic radiator) occurs when 6 = x /2, and it is 1.67 (or 2.23 dB) more
intense than that of the isotropic radiator (with the same radiated power).
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The three-dimensional pattern of Figure 2.13(b), and similar ones, are included throughout the
book to represent the three-dimensional radiation characteristics of antennas. These patterns are
plotted to visualize the three-dimensional radiation pattern of the antenna. These three-dimensional
programs, along with the others, can be used effectively toward the design and synthesis of antennas,
especially arrays, as demonstrated in [7] and [8]. A MATLAB-based program, designated as Spher-
ical, is also included in the publisher’s website to produce these and similar three-dimensional plots.

The directivity of an isotropic source is unity since its power is radiated equally well in all direc-
tions. For all other sources, the maximum directivity will always be greater than unity, and it is
a relative “figure of merit” which gives an indication of the directional properties of the antenna
as compared with those of an isotropic source. In equation form, this is indicated in (2-16a). The
directivity can be smaller than unity; in fact it can be equal to zero. For Examples 2.5 and 2.6, the
directivity is equal to zero in the 8 = 0 direction. The values of directivity will be equal to or greater
than zero and equal to or less than the maximum directivity (0 < D < D).

A more general expression for the directivity can be developed to include sources with radiation
patterns that may be functions of both spherical coordinate angles € and ¢. In the previous exam-
ples we considered intensities that were represented by only one coordinate angle @, in order not to
obscure the fundamental concepts by the mathematical details. So it may now be proper, since the
basic definitions have been illustrated by simple examples, to formulate the more general expres-
sions.

Let the radiation intensity of an antenna be of the form

U= BoF0.9) = 3 [IE@. 4 + 140, )] 2-19)

where By, is a constant, and Eg and Eg are the antenna’s far-zone electric-field components. The
maximum value of (2-19) is given by

Upnax = BoF (0, )| max = BoFmax (0, @) (2-19a)

The total radiated power is found using

2z T
Pra = ]ig U9, ¢)dQ = BQ/ / F(6,¢)sin0 db de (2-20)
S o Jo

We now write the general expression for the directivity and maximum directivity using (2-16) and
(2-16a), respectively, as

D0, ) = 4n——— F6.4)
/ / F(0, $)sin 0 dO dp (2-21)
0 0
DO F(es d))lmax

=4n 2 /3
/ / F(6,$)sin0do d¢ (2-22)
0 0
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Equation (2-22) can also be written as

4z 4z

2z T 0
[ / / F(0, $)sin 0.0 dqs] / FO.Plpay (2-23)
0 0

where €, is the beam solid angle, and it is given by

1 2 .4 ) 2z a )
_QA_m/O /0 F(9,¢)sm9d6’d¢—/0 /0 F,(0,¢)sin0do dep

F©,¢)
F(g, ¢)|max

D0=

(2-24)

F,(0,¢) = (2-25)

Dividing by F(0, ¢)|,.x merely normalizes the radiation intensity F(60, ¢), and it makes its max-
imum value unity.

The beam solid angle Q, is defined as the solid angle through which all the power of the antenna
would flow if its radiation intensity is constant (and equal to the maximum value of U) for all angles
within Q.

2.6.1 Directional Patterns

Instead of using the exact expression of (2-23) to compute the directivity, it is often convenient to
derive simpler expressions, even if they are approximate, to compute the directivity. These can also
be used for design purposes. For antennas with one narrow major lobe and very negligible minor
lobes, the beam solid angle is approximately equal to the product of the half-power beamwidths
in two perpendicular planes [5] shown in Figure 2.14(a). For a rotationally symmetric pattern, the
half-power beamwidths in any two perpendicular planes are the same, as illustrated in Figure 2.14(b).

01-=02r

X

(a) Nonsymmetrical pattern (b) Symmetrical pattern

Figure 2.14 Beam solid angles for nonsymmetrical and symmetrical radiation patterns.



48 FUNDAMENTAL PARAMETERS AND FIGURES-OF-MERIT OF ANTENNAS

With this approximation, (2-23) can be approximated by

D = 4z | 4xm
0 QA B ®1r®2r (2_26)
The beam solid angle €, has been approximated by
QA el ®1r®2r (2—263)
where
©,;, = half-power beamwidth in one plane (rad)
0,, = half-power beamwidth in a plane at a right angle to the other (rad)
If the beamwidths are known in degrees, (2-26) can be written as
47(180/x)?
= x(180/ ) _ 41,253 (2-27)
01404 01,0
where
©,, = half-power beamwidth in one plane (degrees)
©,, = half-power beamwidth in a plane at a right angle to the other (degrees)
For planar arrays, a better approximation to (2-27) is [9]
32400  _ 32,400
0= Q,(degrees)?  ©0,,0,, (2-27a)

The validity of (2-26) and (2-27) is based on a pattern that has only one major lobe and any minor
lobes, if present, should be of very low intensity. For a pattern with two identical major lobes, the
value of the maximum directivity using (2-26) or (2-27) will be twice its actual value. For patterns
with significant minor lobes, the values of maximum directivity obtained using (2-26) or (2-27),
which neglect any minor lobes, will usually be too high.

Example 2.7
The radiation intensity of the major lobe of many antennas can be adequately represented by

U=B, cos* 0
where By, is the maximum radiation intensity. The radiation intensity exists only in the upper
hemisphere (0 < 6 < 7/2,0 < ¢ < 2x), and it is shown in Figure 2.15.
Find the

a. beam solid angle; exact and approximate.
b. maximum directivity; exact using (2-23) and approximate using (2-26).
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Solution: The half-power point of the pattern occurs at f = 32.765°. Thus the beamwidth in
the 0 direction is 65.53° or

©®;, = 1.1437 rads

Normalized Field
Pattern (linear scale)

1

0.9

0.8
10.7
10.6
10.5

10.4

0.3
Y 0.2

v

0.1

Figure 2.15 Radiation intensity pattern of the form U = cos* @ in the upper hemisphere.

Since the pattern is independent of the ¢ coordinate, the beamwidth in the other plane is also
equal to

©,, = 1.1437 rads

a. Beam solid angle Q,:
Exact: Using (2-24), (2-25)

360°  £90° 2t /2
Q4 :/ / cos* 0dQ =/ / cos* 0sin 6 d6 d¢
0 0 o Jo

2 /2
= / do / cos* 0sin 0 do
0 0

/2 o1
=2r / cos* 0sinfdo = 5 steradians
0

Approximate: Using (2-26a)

Q% 0,0, =1.1437(1.1437) = (1.1437)* = 1.308 steradians
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b. Directivity Dy:

47 (5
Exact: Dy = i = O = 10 (dimensionless) = 10 dB
Qy 27
The same exact answer is obtained using (2-16a).
Approximate: D ~ ?2—7: = 127:)8 = 9.61 (dimensionless) = 9.83 dB

The exact maximum directivity is 10 and its approximate value, using (2-26), is 9.61. Even better
approximations can be obtained if the patterns have much narrower beamwidths, which will be
demonstrated later in this section.

Many times it is desirable to express the directivity in decibels (dB) instead of dimensionless quanti-
ties. The expressions for converting the dimensionless quantities of directivity and maximum direc-
tivity to decibels (dB) are

D(dB) = 10log;o[D(dimensionless)] (2-28a)
Dy(dB) = 101log;o[Dy(dimensionless)] (2-28b)

It has also been proposed [10] that the maximum directivity of an antenna can also be obtained
approximately by using the formula

L=1<L+L> (2-29)

where

DT N T (2-299)
/ sin 0 do Ir
2In2 J,
1 161n2
D, ~ ~ 2-2
0, ©,./2 i 02 (2-29b)
/ sin 6 do 2r
2In2 /,

©;, and ©,, are the half-power beamwidths (in radians) of the E- and H-planes, respectively. The
formula of (2-29) will be referred to as the arithmetic mean of the maximum directivity. Using (2-
29a) and (2-29b) we can write (2-29) as

11 (9,99, 230
D, 22\ 16 16 )  32In2
or
. 32In2 _  22.181
0= 2 ) 2 (2-30a)
®1r + ®2r ®1r + ®2r
22.181(180/7)?
D, =~ (180/7)° 72,815 (2-300)

2 2 T a2 2
®1d + ®2d ®1d + ®2d



DIRECTIVITY 51

TABLE 2.1 Comparison of Exact and Approximate Values of Maximum Directivity for U = cos” 0
Power Patterns

Exact Kraus Tai and Pereira
Equation Equation Kraus Equation Tai and Pereira
n (2-22) (2-26) % Error (2-30a) % Error
1 4 2.86 —28.50 2.53 -36.75
2 6 5.09 —15.27 4.49 -25.17
3 8 7.35 -8.12 6.48 —19.00
4 10 9.61 -3.90 8.48 —15.20
5 12 11.87 —1.08 10.47 —12.75
6 14 14.13 +0.93 12.46 —11.00
7 16 16.39 +2.48 14.47 —9.56
8 18 18.66 +3.68 16.47 —8.50
9 20 20.93 +4.64 18.47 —7.65
10 22 23.19 +5.41 20.47 —6.96
11.28 24.56 26.08 +6.24 23.02 —6.24
15 32 34.52 +7.88 30.46 —4.81
20 42 45.89 +9.26 40.46 -3.67

where ©,, and ©,, are the half-power beamwidths in degrees. Equation (2-30a) is to be contrasted
with (2-26) while (2-30b) should be compared with (2-27).

In order to make an evaluation and comparison of the accuracies of (2-26) and (2-30a), examples
whose radiation intensities (power patterns) can be represented by

0 elsewhere (2-31)

Bycos"(0) 0<0<nxn/2, 0<¢<2x
YCRIES {

where n =1 —10, 11.28, 15, and 20 are considered. The maximum directivities were computed
using (2-26) and (2-30a) and compared with the exact values as obtained using (2-23). The results
are shown in Table 2.1. From the comparisons it is evident that the error due to Tai & Pereira’s
formula is always negative (i.e., it predicts lower values of maximum directivity than the exact ones)
and monotonically decreases as n increases (the pattern becomes more narrow). However, the error
due to Kraus’ formula is negative for small values of n and positive for large values of n. For small
values of n the error due to Kraus’ formula is negative and positive for large values of #n; the error is
zero when n = 5.497 ~ 5.5 (half-power beamwidth of 56.35°). In addition, for symmetrically rota-
tional patterns the absolute error due to the two approximate formulas is identical when n = 11.28,
which corresponds to a half-power beamwidth of 39.77°. From these observations we conclude that,
Kraus’ formula is more accurate for small values of n (broader patterns) while Tai & Pereira’s is
more accurate for large values of n (narrower patterns). Based on absolute error and symmetrically
rotational patterns, Kraus’ formula leads to smaller error for n < 11.28 (half-power beamwidth
greater than 39.77°) while Tai & Pereira’s leads to smaller error for n > 11.28 (half-power
beamwidth smaller than 39.77°). The results are shown plotted in Figure 2.16 for 0 < n < 450.

2.6.2 Omnidirectional Patterns

Some antennas (such as dipoles, loops, broadside arrays) exhibit omnidirectional patterns, as illus-
trated by the three-dimensional patterns in Figure 2.17 (a,b). As single-lobe directional patterns can
be approximated by (2-31), omnidirectional patterns can often be approximated by

U = |sin"(9)] 0<0<n, 0<¢p<2r (2-32)



52 FUNDAMENTAL PARAMETERS AND FIGURES-OF-MERIT OF ANTENNAS
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Figure 2.16  Comparison of exact and approximate values of directivity for directional U = cos”  power pat-
terns.

where n represents both integer and noninteger values. The directivity of antennas with patterns
represented by (2-32) can be determined in closed form using the definition of (2-16a). However,
as was done for the single-lobe patterns of Figure 2.14, approximate directivity formulas have been
derived [11], [12] for antennas with omnidirectional patterns similar to the ones shown in Figure 2.17
whose main lobe is approximated by (2-32). The approximate directivity formula for an omnidirec-
tional pattern as a function of the pattern half-power beamwidth (in degrees), which is reported by
McDonald in [11], was derived based on the array factor of a broadside collinear array [see Sec-
tion 6.4.1 and (6-38a)] and is given by

101
" HPBW (degrees) — 0.0027 [HPBW (deg.grees)]2

D, (2-33a)

However, that reported by Pozar in [12] is derived based on the exact values obtained using (2-32)
and then representing the data in closed-form using curve-fitting, and it is given by

Dy ~ —172.4 + 1911/0.818 + 1/HPBW (degrees) (2-33b)

The approximate formula of (2-33a) should, in general, be more accurate for omnidirectional pat-
terns with minor lobes, as shown in Figure 2.17(a), while (2-33b) should be more accurate for omni-
directional patterns with minor lobes of very low intensity (ideally no minor lobes), as shown in
Figure 2.17(b).

The approximate formulas of (2-33a) and (2-33b) can be used to design omnidirectional antennas
with specified radiation pattern characteristics. To facilitate this procedure, the directivity of antennas
with omnidirectional patterns approximated by (2-32) is plotted in Figure 2.18 versus n and the
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Figure 2.17 Omnidirectional patterns with and without minor lobes.
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Figure 2.18 Comparison of exact and approximate values of directivity for omnidirectional U = sin" 0
power patterns.
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half-power beamwidth (in degrees). Three curves are plotted in Figure 2.18; one using (2-16a) and
referred as exact, one using (2-33a) and denoted as McDonald, and the third using (2-33b) and
denoted as Pozar. Thus, the curves of Figure 2.18 can be used for design purposes, as follows:

a. Specify the desired directivity and determine the value of n and half-power beamwidth of the
omnidirectional antenna pattern, or

b. Specify the desired value of n or half-power beamwidth and determine the directivity of the
omnidirectional antenna pattern.

To demonstrate the procedure, an example is taken.

Example 2.8
Design an antenna with omnidirectional amplitude pattern with a half-power beamwidth of 90°.
Express its radiation intensity by U = sin” 6. Determine the value of n and attempt to identify
elements that exhibit such a pattern. Determine the directivity of the antenna using (2-16a), (2-
33a), and (2-33b).
Solution: Since the half-power beamwidth is 90°, the angle at which the half-power point
occurs is § = 45°. Thus

U6 = 45°) = 0.5 = sin"(45°) = (0.707)"
or
n=2
Therefore, the radiation intensity of the omnidirectional antenna is represented by U = sin? 6.
An infinitesimal dipole (see Chapter 4) or a small circular loop (see Chapter 5) are two antennas

which possess such a pattern.
Using the definition of (2-16a), the exact directivity is

Ve =
2 b3 R
P= / / sin® 0 sin 6 d6 d¢p = >
0 0
Y 3
=" _=2=1761dB
07 8x/3 " 2

Since the half-power beamwidth is equal to 90°, then the directivity based on (2-33a) is equal to

101

Dy
while that based on (2-33b) is equal to

Dy =—-172.4+1914/0.818 + 1/90 = 1.516 = 1.807 dB

The value of n and the three values of the directivity can also be obtained using Figure 2.18,
although they may not be as accurate as those given above because they have to be taken off the
graph. However, the curves can be used for other problems.
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2.7 NUMERICAL TECHNIQUES

For most practical antennas, their radiation patterns are so complex that closed-form mathemati-
cal expressions are not available. Even in those cases where expressions are available, their form is
so complex that integration to find the radiated power, required to compute the maximum directiv-
ity, cannot be performed. Instead of using the approximate expressions of Kraus, Tai and Pereira,
McDonald, or Pozar alternate and more accurate techniques may be desirable. With the high-speed
computer systems now available, the answer may be to apply numerical methods.

Let us assume that the radiation intensity of a given antenna is separable, and it is given by

U = Byf (0)g(¢) (2-34)

where B is a constant. The directivity for such a system is given by

4nU_.
D, = —Lmax (2-35)
Prad
where
2r 4
Pq =By / { / f(0)g(d) Sin@dt‘)} d¢ (2-36)
0 0
which can also be written as
2 V.4
Pryg = Bo/ 8(¢) {/ f0) sianG} do (2-37)
0 0

If the integrations in (2-37) cannot be performed analytically, then from integral calculus we can
write a series approximation

z N
/ £(0)sin6 do = Z[f(ei) sin 6,]A6; (2-38)
0 i=1

For N uniform divisions over the z interval,

V3
AG; = N (2-38a)
Referring to Figure 2.19, 6; can take many different forms. Two schemes are shown in Figure 2.19
such that

0»=i<£>, i=1,2,3,....N (2-38b)
N
or

0, = =

. z .
; 2N+(l—1)ﬁ, i=123,....N (2-38c)

In the former case, 6, is taken at the trailing edge of each division; in the latter case, 0, is selected at
the middle of each division. The scheme that is more desirable will depend upon the problem under
investigation. Many other schemes are available.
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In a similar manner, we can write for the ¢ variations that

2r M
/0 g dp = 2(d)Ad;
j=1

where for M uniform divisions

Again referring to Figure 2.19

2

¢j=j<ﬁ>, j=1,23,....M

or

2 . 2 .
¢]:W+U_l)ﬁ, ]:1,2,3,...,M

Combining (2-38), (2-38a), (2-39), and (2-39a) we can write (2-37) as

Pq = By (%) <2ﬁ”) i {g(¢j) lgf(@)sin 6,-] }

=

(2-39)

(2-39a)

(2-39b)

(2-39¢)

(2-40)

The double summation of (2-40) is performed by adding for each value of j(j = 1,2,3,...,M) all
values of i(i = 1,2,3,...,N). In a computer program flowchart, this can be performed by a loop
within a loop. Physically, (2-40) can be interpreted by referring to Figure 2.19. It simply states that

0; (Eq. 2-38c¢)
0; (Eq. 2-38b)

#; (Eq. 2-39¢)

¢; (Eq. 2-39b)

Figure 2.19  Digitization scheme of pattern in spherical coordinates.

Y
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for each value of g(¢) at the azimuthal angle ¢ = ¢, the values of f(0) sin 6 are added for all values
of  =6,(i=1,2,3,...,N). The values of §; and ¢)j can be determined by using either of the forms
as given by (2-38b) or (2-38c) and (2-39b) or (2-39c¢).

Since the 0 and ¢ variations are separable, (2-40) can also be written as

P = By (%) (%) lg g(dy)] lg,f(ai) sin eil (2-41)

in which case each summation can be performed separately.
If the 6 and ¢ variations are not separable, and the radiation intensity is given by

U = ByF(6, ) (2-42)
the digital form of the radiated power can be written as

Py =B, <%) (%) f li F(6;, ¢))sin ei] (2-43)

j=1 Li=1

0; and ¢; take different forms, two of which were introduced and are shown pictorially in Figure 2.19.
The evaluation and physical interpretation of (2-43) is similar to that of (2-40).
To examine the accuracy of the technique, two examples will be considered.

Example 2.9(a)
The radiation intensity of an antenna is given by

Bysinfsin’, 0<0<z, 0<¢p<nx
U@, ) =

0 elsewhere

The three-dimensional pattern of U(8, ¢) is shown in Figure 2.20.

Determine the maximum directivity numerically by using (2-41) with 6; and ¢; of
(2-38b) and (2-39b), respectively. Compare it with the exact value.

Solution: Let us divide the 6 and ¢ intervals each into 18 equals segments (N = M = 18).
Since 0 < ¢ < 7, then Ag; = /M and (2-41) reduces to

18 18
T 2 ) o %)
P..q =By <ﬁ) L; sin” ¢; ;sm 0,
with

0i=i(18>=i(10°), i=1,2,3,...,18

¢j=j<£)=j(1o°), j=1,2.3,...,18
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0<O<rx
0<¢<rm
0 Elsewhere

By sin(@)sin’(¢) {

Normalized Field
Pattern (linearscale)
1

0.9
0.8

10.7

40.6

40.5

0.4

0.3

0.2

0.1
0

Three-dimensional pattern of the radiation of Examples 2.9(a,b).

Thus
7 \2 T I Y . ona2
Prag = Bo (2 ) Tsin(10°) + sin®(20%) + -+ sin*(180°)]
T \2 7[2
Prag = By (E> 9 =B, (T
and
azU,,
Dy= om0 _ 50009
P T /4 T

The exact value is given by

T .2 4 . 2 T ”2
P..q =By sin” ¢ d¢ sin 0d0=_< >BO=—B<)
0 0 2 4

ST

and

AU
= TTU max — 4n — E = 5.0929
Prad 77'-2/4 z

which is the same as the value obtained numerically!
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Example 2.9(b)
Given the same radiation intensity as that in Example 2.9(a), determine the directivity using (2-
41) with 6; and o of (2-38c) and (2-39¢).
Solution: Again using 18 divisions in each interval, we can write (2-41) as

o [ 18 18
P.q=B (1”_8) [Z sin’ ¢)j] lz sin’ 91‘]

j=1 i=1

with

T . T ) . o .
0’:%4_(1_1)_18 =5°+@G-110°, i=1,2,3,...,18
¢,_£+(]'_])£_5°+(j_])10° i=1,2,3 18
j_36 18— £l ]_ b b 900

Because of the symmetry of the divisions about the 8 = 7 /2 and ¢ = z/2 angles, we can write

9 9
2
P4 =By <1£8> lZ 2 sin’ q’)j] [2 2 sin’ 91’]
j=1 i=1

T

P =B< )24[sin2(5°)+sin2(15°)+---+sin2(85°)]2
rad 0 18

T

P, =B, ( = )24(4.5)2 - B, (%)2 81) = B, <%2>

which is identical to that of the previous example. Thus

D =%=4_”=1_6=50929
0 Prag z2/4 2

which again is equal to the exact value!

It is interesting to note that decreasing the number of divisions (M and/or N) to 9, 6, 4, and even
2 leads to the same answer, which also happens to be the exact value! To demonstrate as to why
the number of divisions does not affect the answer for this pattern, let us refer to Figure 2.21 where
we have plotted the sin? ¢ function and divided the 0° < ¢ < 180° interval into six divisions. The
exact value of the directivity uses the area under the solid curve. Doing the problem numerically, we
find the area under the rectangles, which is shown shaded. Because of the symmetrical nature of the
function, it can be shown that the shaded area in section #1 (included in the numerical evaluation)
is equal to the blank area in section #1’ (left out by the numerical method). The same is true for
the areas in sections #2 and #2/, and #3 and #3'. Thus, there is a one-to-one compensation. Similar
justification is applicable for the other number of divisions.

It should be emphasized that all functions, even though they may contain some symmetry, do not
give the same answers independent of the number of divisions. As a matter of fact, in most cases the
answer only approaches the exact value as the number of divisions is increased to a large number.
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L

sin” ¢
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#27
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—_— -

e L

0 30° 60° 90° 120° 150° 180°
¢ (degrees)

Figure 2.21  Digitized form of sin” ¢ function.

A MATLAB and FORTRAN computer program called Directivity has been developed to com-
pute the maximum directivity of any antenna whose radiation intensity is U = F(0, ¢) based on the
formulation of (2-43). The intensity function F' does not have to be a function of both 6 and ¢. The
numerical evaluations are made at the trailing edge, as defined by (2-38b) and (2-39b). The program
is included in the publisher’s website for this book. It contains a subroutine for which the intensity
factor U = F(6, ¢) for the required application must be specified by the user. As an illustration, the
antenna intensity U = sin @ sin® ¢ has been inserted in the subroutine. In addition, the upper and
lower limits of 6 and ¢ must be specified for each application of the same pattern.

2.8 ANTENNA EFFICIENCY
Associated with an antenna are a number of efficiencies and can be defined using Figure 2.22. The
total antenna efficiency e, is used to take into account losses at the input terminals and within the

structure of the antenna. Such losses may be due, referring to Figure 2.22(b), to

1. reflections because of the mismatch between the transmission line and the antenna
2. I?R losses (conduction and dielectric)

In general, the overall efficiency can be written as

ey = e.e.e (2-44)

where
eo = total efficiency (dimensionless)

e, = reflection (mismatch) efficiency = (1 — |I" |2) (dimensionless)
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e. = conduction efficiency (dimensionless)
e, = dielectric efficiency  (dimensionless)

I' = voltage reflection coefficient at the input terminals of the antenna
' =, - Zy)/(Z, + Zy) where Z;, = antenna input impedance, Z, = characteristic
impedance of the transmission line]

1+ |0

-1

VSWR = voltage standing wave ratio =

/\

tH Antenna

1

Input Output
terminals terminals
(gain reference) (directivity reference)

(a) Antenna reference terminals

\

-~
a

rJ|

(b) Reflection, conduction, and dielectric losses

Figure 2.22  Reference terminals and losses of an antenna.

Usually e, and e, are very difficult to compute, but they can be determined experimentally. Even
by measurements they cannot be separated, and it is usually more convenient to write (2-44) as

eo=ee.y=e (1 —|T1% (2-45)

where e.; = e.e, = antenna radiation efficiency, which is used to relate the gain and directivity.

2.9 GAIN, REALIZED GAIN

Another useful figure-of-merit describing the performance of an antenna is the gain. Although the
gain of the antenna is closely related to the directivity, it is a measure that takes into account the
efficiency of the antenna as well as its directional capabilities. Remember that directivity is a measure
that describes only the directional properties of the antenna, and it is therefore controlled only by
the pattern.

Gain of an antenna (in a given direction) is defined as “the ratio of the intensity, in a given direc-
tion, to the radiation intensity that would be obtained if the power accepted by the antenna were
radiated isotropically. The radiation intensity corresponding to the isotropically radiated power is
equal to the power accepted (input) by the antenna divided by 4z.” In equation form this can be
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expressed as

radiation intensity —an U, ¢)

T otal input (accepted) power P,

Gain = 4

(dimensionless) (2-46)

In most cases we deal with relative gain, which is defined as “the ratio of the power gain in a
given direction to the power gain of a reference antenna in its referenced direction.” The power input
must be the same for both antennas. The reference antenna is usually a dipole, horn, or any other
antenna whose gain can be calculated or it is known. In most cases, however, the reference antenna
is a lossless isotropic source. Thus

4zU(0, @)

G= . .
P, (lossless isotropic source)

(dimensionless) (2-46a)

When the direction is not stated, the power gain is usually taken in the direction of maximum radi-
ation.

Referring to Figure 2.22(a), we can write that the total radiated power (P, ) is related to the total
input power (P;,) by

Prad = echin (2'47)

where e is the antenna radiation efficiency (dimensionless) which is defined in (2-44), (2-45) and
Section 2.14 by (2-90). According to the IEEE Standards, “gain does not include losses arising from
impedance mismatches (reflection losses) and polarization mismatches (losses).”

In this edition of the book we define two gains; one, referred to as gain (G), and the other, referred
to as realized gain (G,,), that also takes into account the reflection/mismatch losses represented in
both (2-44) and (2-45).

Using (2-47) reduces (2-46a) to

6
GO, ) = ey [%M] (2-48)
rad
which is related to the directivity of (2-16) and (2-21) by
G(0, ) = e4D(0, P) (2-49)

In a similar manner, the maximum value of the gain is related to the maximum directivity of (2-16a)
and (2-23) by

GO = G(ga d))lmax = ecdD(ga d))lmax = ecdDO (2-493)

While (2-47) does take into account the losses of the antenna element itself, it does not take
into account the losses when the antenna element is connected to a transmission line, as shown in
Figure 2.22. These connection losses are usually referred to as reflections (mismatch) losses, and they
are taken into account by introducing a reflection (mismatch) efficiency e,., which is related to the
reflection coefficient as represented in (2-45) or e, = (1 — IT|%). Thus, we can introduce a realized
gain G,, that takes into account the reflection/mismatch losses (due to the connection of the antenna
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element to the transmission line), and it can be written as

G,.(0,9) = €,G(6,¢) = (1 - |T1)G(0, $)

=e,e.4D(0,d) = e,D(0, $) (2-49b)

where e, is the overall efficiency as defined in (2-44), (2-45). Similarly, the maximum realized gain
G,,o of (2-49a) is related to the maximum directivity D by

Greo = Gro(0, D)limax = €,G(0, D)l max = (1 = TGO, D) max

(2-49¢)
= erecdD(ea ¢)|max = eoD(Q’ ¢)|max =e,Dy

If the antenna is matched to the transmission line, that is, the antenna input impedance Z;, is equal
to the characteristic impedance Z, of the line (|I'| = 0), then the two gains are equal (G,, = G).

As was done with the directivity, we can define the partial gain of an antenna for a given polariza-
tion in a given direction as “that part of the radiation intensity corresponding to a given polarization
divided by the total radiation intensity that would be obtained if the power accepted by the antenna
were radiated isotropically.” With this definition for the partial gain, then, in a given direction, “the
total gain is the sum of the partial gains for any two orthogonal polarizations.” For a spherical coor-
dinate system, the total maximum gain G, for the orthogonal 6 and ¢ components of an antenna can
be written, in a similar form as was the maximum directivity in (2-17)—(2-17b), as

GO = G0 + G¢ (2_50)

while the partial gains Gy and G, are expressed as

4zU,
Gy= 220 (2-50a)
Pin
4zU
Gy=— ¢ (2-50b)

in

where
U, = radiation intensity in a given direction contained in E, field component
U, = radiation intensity in a given direction contained in E, field component
P;, = total input (accepted) power

For many practical antennas an approximate formula for the gain, corresponding to (2-27) or
(2-27a) for the directivity, is

30,000

Gy =~
®1d®2d

(2-51)

In practice, whenever the term “gain” is used, it usually refers to the maximum gain as defined by
(2-49a) or (2-49c¢).

Usually the gain is given in terms of decibels, instead of the dimensionless quantity of (2-49a).
The conversion formula is

Gy(dB) = 10log;qle 4D (dimensionless)] (2-52)
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Example 2.10

A lossless resonant half-wavelength dipole antenna, with input impedance of 73 ohms, is con-
nected to a transmission line whose characteristic impedance is 50 ohms. Assuming that the
pattern of the antenna is given approximately by

U = By sin’ 0

find the maximum realized gain of this antenna.
Solution: Let us first compute the maximum directivity of the antenna. For this

Ulmax = Umax = By

2 v 4 b4 3”2
P =/0 /0 U(9,¢)sin9d6’d¢=2nBO/0 sin*0.do = B, <T>

U
Dy =4r—= = 15 =1.697
P V4

rad

Since the antenna was stated to be lossless, then the radiation efficiency e, = 1.
Thus, the total maximum gain is equal to

Gy = e.4Dy = 1(1.697) = 1.697
Gy(dB) = 1010g,((1.697) = 2.297

which is identical to the directivity because the antenna is lossless.

There is another loss factor which is not taken into account in the gain. That is the loss due to
reflection or mismatch losses between the antenna (load) and the transmission line. This loss is
accounted for by the reflection efficiency of (2-44) or (2-45), and it is equal to

2
19230 > =0.965

e =(1=ITH = (1_’73+50

¢,(dB) = 1010g,,(0.965) = —0.155

Therefore the overall efficiency is

ey = ¢,e.; = 0.965

eo(dB) = —0.155

Thus, the overall losses are equal to 0.155 dB. The maximum realized gain is equal to
G0 = egDy = 0.965(1.697) = 1.6376
G,,0(dB) = 10log;((1.6376) = 2.142
The gain in dB can also be obtained by converting the directivity and radiation efficiency in

dB and then adding them. Thus,

e.4(dB) = 10log;(,(1.0) =0

Dy(dB) = 101log;((1.697) = 2.297

Gy(dB) = e,(dB) + Dy(dB) = 2.297

which is the same as obtained previously. The same procedure can be used for the realized gain.
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2.10 BEAM EFFICIENCY

Another parameter that is frequently used to judge the quality of transmitting and receiving antennas
is the beam efficiency. For an antenna with its major lobe directed along the z-axis (6 = 0), as shown
in Figure 2.1(a), the beam efficiency (BE) is defined by

power transmitted (received) within cone angle 6,

BE (dimensionless) (2-53)

power transmitted (received) by the antenna

where 6, is the half-angle of the cone within which the percentage of the total power is to be found.
Equation (2-53) can be written as

2z 0,
/ / U(8, ¢)sin 6 d6 d¢p
BE = 2L_-0

2z T
/ / U(, ¢) sin 0 d6 d
0 0

If 6, is chosen as the angle where the first null or minimum occurs (see Figure 2.1), then the beam
efficiency will indicate the amount of power in the major lobe compared to the total power. A very
high beam efficiency (between the nulls or minima), usually in the high 90s, is necessary for anten-
nas used in radiometry, astronomy, radar, and other applications where received signals through
the minor lobes must be minimized. The beam efficiencies of some typical rectangular and circular
aperture antennas will be discussed in Chapter 12.

(2-54)

2.11 BANDWIDTH

The bandwidth of an antenna is defined as “the range of frequencies within which the performance
of the antenna, with respect to some characteristic, conforms to a specified standard.” The bandwidth
can be considered to be the range of frequencies, on either side of a center frequency (usually the
resonance frequency for a dipole), where the antenna characteristics (such as input impedance, pat-
tern, beamwidth, polarization, side lobe level, gain, beam direction, radiation efficiency) are within
an acceptable value of those at the center frequency.

® For broadband antennas, the bandwidth is usually expressed as the ratio of the upper-to-lower
frequencies of acceptable operation. For example, a 10:1 bandwidth indicates that the upper
frequency is 10 times greater than the lower.

® For narrowband antennas, the bandwidth is expressed as a percentage of the frequency dif-
ference (upper minus lower) over the center frequency of the bandwidth. For example, a 5%
bandwidth indicates that the frequency range of acceptable operation is 5% of the bandwidth
center frequency.

Because the characteristics (input impedance, pattern, gain, polarization, etc.) of an antenna do
not necessarily vary in the same manner or are even critically affected by the frequency, there is no
unique characterization of the bandwidth. The specifications are set in each case to meet the needs of
the particular application. Usually there is a distinction made between pattern and input impedance
variations. Accordingly pattern bandwidth and impedance bandwidth are used to emphasize this dis-
tinction. Associated with pattern bandwidth are gain, side lobe level, beamwidth, polarization, and
beam direction while input impedance and radiation efficiency are related to impedance bandwidth.
For example, the pattern of a linear dipole with overall length less than a half-wavelength (I < A/2)
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is basically insensitive to frequency. The limiting factor for this antenna is its impedance, and its
bandwidth can be formulated in terms of the Q. The Q of antennas or arrays with dimensions large
compared to the wavelength, excluding superdirective designs, is near unity. Therefore the band-
width is usually formulated in terms of beamwidth, side lobe level, and pattern characteristics. For
intermediate length antennas, the bandwidth may be limited by either pattern or impedance vari-
ations, depending upon the particular application. For these antennas, a 2:1 bandwidth indicates a
good design. For others, large bandwidths are needed. Antennas with very large bandwidths (like
40:1 or greater) have been designed in recent years. These are known as frequency independent
antennas, and they are discussed in Chapter 11.

The above discussion presumes that the coupling networks (transformers, baluns, etc.) and/or the
dimensions of the antenna are not altered in any manner as the frequency is changed. It is possible
to increase the acceptable frequency range of a narrowband antenna if proper adjustments can be
made on the critical dimensions of the antenna and/or on the coupling networks as the frequency is
changed. Although not an easy or possible task in general, there are applications where this can be
accomplished. The most common examples are the old whip antenna of a car radio and the “rabbit
ears” of a television. Both usually have adjustable lengths which can be used to tune the antenna
for better reception. Antennas of this type, whose adjustments are made to modify their radiation
characteristics, are often referred to as reconfigurable antennas.

2.12 POLARIZATION

Polarization of an antenna in a given direction is defined as “the polarization of the wave transmitted
(radiated) by the antenna. Note: When the direction is not stated, the polarization is taken to be the
polarization in the direction of maximum gain.” In practice, polarization of the radiated energy varies
with the direction from the center of the antenna, so that different parts of the pattern may have
different polarizations.

Polarization of a radiated wave is defined as “that property of an electromagnetic wave describing
the time-varying direction and relative magnitude of the electric-field vector; specifically, the figure
traced as a function of time by the extremity of the vector at a fixed location in space, and the sense
in which it is traced, as observed along the direction of propagation.” Polarization then is the curve
traced by the end point of the arrow (vector) representing the instantaneous electric field. The field
must be observed along the direction of propagation. A typical trace as a function of time is shown
in Figures 2.23(a) and (b). Animation of the these two traces can be performed using the MATLAB
computer program Polarization_Diagram_Ellipse_Animation found in the publisher’s website for
this book.

The polarization of a wave can be defined in terms of a wave radiated (transmitted) or received
by an antenna in a given direction. The polarization of a wave radiated by an antenna in a specified
direction at a point in the far field is defined as “the polarization of the (locally) plane wave which
is used to represent the radiated wave at that point. At any point in the far field of an antenna the
radiated wave can be represented by a plane wave whose electric-field strength is the same as that
of the wave and whose direction of propagation is in the radial direction from the antenna. As the
radial distance approaches infinity, the radius of curvature of the radiated wave’s phase front also
approaches infinity and thus in any specified direction the wave appears locally as a plane wave.” This
is a far-field characteristic of waves radiated by all practical antennas, and it is illustrated analytically
in Section 3.6 of Chapter 3. The polarization of a wave received by an antenna is defined as the
“polarization of a plane wave, incident from a given direction and having a given power flux density,
which results in maximum available power at the antenna terminals.”

Polarization may be classified as linear, circular, or elliptical. If the vector that describes the
electric field at a point in space as a function of time is always directed along a line, the field is said to
be linearly polarized. In general, however, the figure that the electric field traces is an ellipse, and the
field is said to be elliptically polarized. Linear and circular polarizations are special cases of elliptical,
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(a) Rotation of wave
£y

Eyo
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Major axis Minor axis

(b) Polarization ellipse

Figure 2.23  Rotation of a plane electromagnetic wave and its polarization ellipse at z = 0 as a function of time.

and they can be obtained when the ellipse becomes a straight line or a circle, respectively. The figure
of the electric field is traced in a clockwise (CW) or counterclockwise (CCW) sense. Clockwise
rotation of the electric-field vector is also designated as right-hand polarization and counterclockwise
as left-hand polarization.

In general, the polarization characteristics of an antenna can be represented by its polarization
pattern whose one definition is “the spatial distribution of the polarizations of a field vector excited
(radiated) by an antenna taken over its radiation sphere. When describing the polarizations over the
radiation sphere, or portion of it, reference lines shall be specified over the sphere, in order to measure
the tilt angles (see tilt angle) of the polarization ellipses and the direction of polarization for linear
polarizations. An obvious choice, though by no means the only one, is a family of lines tangent at each
point on the sphere to either the 6 or ¢ coordinate line associated with a spherical coordinate system
of the radiation sphere. At each point on the radiation sphere the polarization is usually resolved into
a pair of orthogonal polarizations, the co-polarization and cross polarization. To accomplish this, the
co-polarization must be specified at each point on the radiation sphere.” “Co-polarization represents
the polarization the antenna is intended to radiate (receive) while cross-polarization represents the
polarization orthogonal to a specified polarization, which is usually the co-polarization.”
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“For certain linearly polarized antennas, it is common practice to define the co-polarization in the
following manner: First specify the orientation of the co-polar electric-field vector at a pole of the
radiation sphere. Then, for all other directions of interest (points on the radiation sphere), require
that the angle that the co-polar electric-field vector makes with each great circle line through the pole
remain constant over that circle, the angle being that at the pole.”

“In practice, the axis of the antenna’s main beam should be directed along the polar axis of the
radiation sphere. The antenna is then appropriately oriented about this axis to align the direction
of its polarization with that of the defined co-polarization at the pole.” “This manner of defining
co-polarization can be extended to the case of elliptical polarization by defining the constant angles
using the major axes of the polarization ellipses rather than the co-polar electric-field vector. The
sense of polarization (rotation) must also be specified.”

The polarization of the wave radiated by the antenna can also be represented on the Poincaré
sphere [13]—[16]. Each point on the Poincaré sphere represents a unique polarization. The north
pole represents left circular polarization, the south pole represents right circular, and points along
the equator represent linear polarization of different tilt angles. All other points on the Poincaré
sphere represent elliptical polarization. For details, see Figure 17.24 of Chapter 17.

The polarization of an antenna is measured using techniques described in Chapter 17.

2.12.1 Linear, Circular, and Elliptical Polarizations

The instantaneous field of a plane wave, traveling in the negative z direction, can be written as
Ezn=a8(zn)+a,8,(z10) (2-55)

According to (2-5), the instantaneous components are related to their complex counterparts by

gx(z; t) — Re[EX—ej(a)H'kZ)] — Re[Exoe]'(wl+kZ+¢x)]

=E, cos(wt+kz+ ¢,) (2-56)
& ,(z:1) = Re[E,” &/ TR)] = Re[E, e/ 9]
= E,, cos(wt + kz + ¢,) (2-57)

where £, and E|, are, respectively, the maximum magnitudes of the x and y components.

A. Linear Polarization
For the wave to have linear polarization, the time-phase difference between the two components
must be

Ap=¢,—d,=nx, n=0,1,23,... (2-58)
B. Circular Polarization

Circular polarization can be achieved only when the magnitudes of the two components are the
same and the time-phase difference between them is odd multiples of 7 /2. That is,

€| =18, | > E,, =E,, (2-59)
+(5+2mm,n=0,1,2, ... forCW (2-60)

Ad):d)y_d)x: 1
~( 4 2mmn=0,1,2,... for CCW (2-61)
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If the direction of wave propagation is reversed (i.e., +z direction), the phases in (2-60) and (2-61)
for CW and CCW rotation must be interchanged.

C. Elliptical Polarization

Elliptical polarization can be attained only when the time-phase difference between the two com-
ponents is odd multiples of 7 /2 and their magnitudes are not the same or when the time-phase
difference between the two components is not equal to multiples of z /2 (irrespective of their mag-
nitudes). That is,

|, #18,| = Ey, # Ey,

when A¢ = ¢y — (l)x = + (% + 2]1)7[ for CW (2-628)
n=0,1,2,... | _ (% +2n)r  for CCW (2-62b)
or
A¢=¢y—¢x#tgﬂ= >0 forCW (2-63)
n=0,1,2,3,... | <0 for CCW (2-64)

For elliptical polarization, the curve traced at a given position as a function of time is, in general,
a tilted ellipse, as shown in Figure 2.23(b). The ratio of the major axis to the minor axis is referred
to as the axial ratio (AR), and it is equal to

AR = DAoraxis _ 04 | _ AR < oo (2-65)
minor axis OB

where
oA =[NE + B2 4B 4 B 422 B cos2ag)) )] 2-66
- 5{ xo T yo+[ x0T y0+ x0 yUCOS( A7} (2-66)
1/2
_ |1 2 2 2 2 1/2
OB = [L(E2, + B2, = [E, + B}, + 2E2 2, cos2a¢)] 2} | (2-67)

The tilt of the ellipse, relative to the y axis, is represented by the angle = given by

2E E
r=Z- %tan_l l# cos(Ad))] (2-68)
X0 yo
When the ellipse is aligned with the principal axes [z = nz/2,n =0, 1,2, ...], the major (minor)
axis is equal to E,,(E,,) or E,,,(E,,) and the axial ratio is equal to E,,/E,, or E,/E,,

yo 0"

SUMMARY

We will summarize the preceding discussion on polarization by stating the general characteristics,
and the necessary and sufficient conditions that the wave must have in order to possess linear, circular
or elliptical polarization.
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Linear Polarization A time-harmonic wave is linearly polarized, at a given point in space,
if the electric-field (or magnetic-field) vector at that point is always oriented along the same
straight line at every instant of time. This is accomplished if the field vector (electric or magnetic)
possesses:

a. Only one component, or

b. Two orthogonal linear components that are in time phase or 180° (or multiples of 180°) out-
of-phase.

Circular Polarization A time-harmonic wave is circularly polarized, at a given point in space,
if the electric (or magnetic) field vector at that point traces a circle as a function of time.

The necessary and sufficient conditions to accomplish this are if the field vector (electric or mag-
netic) possesses all of the following:

a. The field must have two orthogonal linear components, and
b. The two components must have the same magnitude, and
c. The two components must have a time-phase difference of odd multiples of 90°.

The sense of rotation is always determined by rotating the phase-leading component toward the
phase-lagging component and observing the field rotation as the wave is viewed as it travels away
from the observer. If the rotation is clockwise, the wave is right-hand (or clockwise) circularly polar-
ized, if the rotation is counterclockwise, the wave is left-hand (or counterclockwise) circularly polar-
ized. The rotation of the phase-leading component toward the phase-lagging component should be
performed along the angular separation between the two components that is less than 180°. Phases
equal to or greater than 0° and less than 180° should be considered leading whereas those equal to
or greater than 180° and less than 360° should be considered lagging.

Elliptical Polarization A time-harmonic wave is elliptically polarized if the tip of the field vector
(electric or magnetic) traces an elliptical locus in space. At various instants of time the field vector
changes continuously with time at such a manner as to describe an elliptical locus. It is right-hand
(clockwise) elliptically polarized if the field vector rotates clockwise, and it is left-hand (counter-
clockwise) elliptically polarized if the field vector of the ellipse rotates counterclockwise [13]. The
sense of rotation is determined using the same rules as for the circular polarization. In addition to the
sense of rotation, elliptically polarized waves are also specified by their axial ratio whose magnitude
is the ratio of the major to the minor axis.

A wave is elliptically polarized if it is not linearly or circularly polarized. Although linear and
circular polarizations are special cases of elliptical, usually in practice elliptical polarization refers
to other than linear or circular. The necessary and sufficient conditions to accomplish this are if the
field vector (electric or magnetic) possesses all of the following:

a. The field must have two orthogonal linear components, and

b. The two components can be of the same or different magnitude.

c. (1) If the two components are not of the same magnitude, the time-phase difference between
the two components must not be 0° or multiples of 180° (because it will then be linear). (2) If
the two components are of the same magnitude, the time-phase difference between the two
components must not be odd multiples of 90° (because it will then be circular).
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If the wave is elliptically polarized with two components not of the same magnitude but with odd
multiples of 90° time-phase difference, the polarization ellipse will not be tilted but it will be aligned
with the principal axes of the field components. The major axis of the ellipse will align with the axis
of the field component which is larger of the two, while the minor axis of the ellipse will align with
the axis of the field component which is smaller of the two.

2.12.2 Polarization Loss Factor and Efficiency

In general, the polarization of the receiving antenna will not be the same as the polarization of
the incoming (incident) wave. This is commonly stated as “polarization mismatch.” The amount
of power extracted by the antenna from the incoming signal will not be maximum because of the
polarization loss. Assuming that the electric field of the incoming wave can be written as

E, = p,E; (2-69)

where p,, is the unit vector of the wave, and the polarization of the electric field of the receiving
antenna can be expressed as

E,=p,E, (2-70)

where p,, is its unit vector (polarization vector), the polarization loss can be taken into account by
introducing a polarization loss factor (PLF). It is defined, based on the polarization of the antenna
in its transmitting mode, as
PLF = [, - p,|* = | cos l,l/p|2 (dimensionless) (2-71)

where y, is the angle between the two unit vectors. The relative alignment of the polarization of the
incoming wave and of the antenna is shown in Figure 2.24. If the antenna is polarization matched,
its PLF will be unity and the antenna will extract maximum power from the incoming wave.

Another figure of merit that is used to describe the polarization characteristics of a wave and that
of an antenna is the polarization efficiency (polarization mismatch or loss factor) which is defined
as “the ratio of the power received by an antenna from a given plane wave of arbitrary polarization
to the power that would be received by the same antenna from a plane wave of the same power flux
density and direction of propagation, whose state of polarization has been adjusted for a maximum
received power.” This is similar to the PLF and it is expressed as

|£e . Eincl2
Pe= |, |?|Einc |2

(2-71a)
pW
A
vy,

P

v
|

>

Figure 2.24 Polarization unit vectors of incident wave (p,,) and antenna (p,), and polarization loss fac-
tor (PLF).
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where
¢, = vector effective length of the antenna

E"® = incident electric field

The vector effective length £, of the antenna has not yet been defined, and it is introduced in
Section 2.15. It is a vector that describes the polarization characteristics of the antenna. Both the
PLF and p, lead to the same answers.

The conjugate (*) is not used in (2-71) or (2-71a) so that a right-hand circularly polarized incident
wave (when viewed in its direction of propagation) is matched to right-hand circularly polarized
receiving antenna (when its polarization is determined in the transmitting mode). Similarly, a left-
hand circularly polarized wave will be matched to a left-hand circularly polarized antenna.

To illustrate the principle of polarization mismatch, two examples are considered.

Example 2.11
The electric field of a linearly polarized electromagnetic wave given by

E; = 4 E(x,y)e 7
is incident upon a linearly polarized antenna whose electric-field polarization is expressed as

E, ~(@,+2a)E(r,0,9)

Find the polarization loss factor (PLF).
Solution: For the incident wave

and for the antenna

The PLF is then equal to

L

V2

a A A A A 1
PLF = [p,, - P> = 18, - — (@, +4)|> = 3

which in dB is equal to

PLF (dB) = 10log;, PLF (dimensionless) = 101log;,(0.5) = =3

Even though in Example 2.11 both the incoming wave and the antenna are linearly polarized,
there is a 3-dB loss in extracted power because the polarization of the incoming wave is not aligned
with the polarization of the antenna. If the polarization of the incoming wave is orthogonal to the
polarization of the antenna, then there will be no power extracted by the antenna from the incoming
wave and the PLF will be zero or —oo dB. In Figures 2.25(a,b) we illustrate the polarization loss
factors (PLF) of two types of antennas: wires and apertures.

We now want to consider an example where the polarization of the antenna and the incoming
wave are described in terms of complex polarization vectors.
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Figure 2.25 Polarization loss factors (PLF) for aperture and linear wire antennas.

Example 2.12

A right-hand (clockwise) circularly polarized wave radiated by an antenna, placed at some dis-
tance away from the origin of a spherical coordinate system, is traveling in the inward radial
direction at an angle (0, ¢») and it is impinging upon a right-hand circularly polarized receiving
antenna placed at the origin (see Figures 2.1 and 17.23 for the geometry of the coordinate sys-
tem). The polarization of the receiving antenna is defined in the transmitting mode, as desired by
the definition of the IEEE. Assuming the polarization of the incident wave is represented by

Determine the polarization loss factor (PLF).

Solution: The polarization of the incident right-hand circularly polarized wave traveling along
the —r radial direction is described by the unit vector

R 4y +ja,
Pw =\ ——
V2
while that of the receiving antenna, in the transmitting mode, is represented by the unit vector

dg — i,

T\ v




74 FUNDAMENTAL PARAMETERS AND FIGURES-OF-MERIT OF ANTENNAS

Therefore the polarization loss factor is
PLE = B, - B,|* = %|1+1|2 =1=0dB

Since the polarization of the incoming wave matches (including the sense of rotation) the polar-
ization of the receiving antenna, there should not be any losses. Obviously the answer matches
the expectation.

Based upon the definitions of the wave transmitted and received by an antenna, the polarization
of an antenna in the receiving mode is related to that in the transmitting mode as follows:

1. “In the same plane of polarization, the polarization ellipses have the same axial ratio, the same
sense of polarization (rotation) and the same spatial orientation.

2. “Since their senses of polarization and spatial orientation are specified by viewing their polar-
ization ellipses in the respective directions in which they are propagating, one should note that:

a. Although their senses of polarization are the same, they would appear to be opposite if both
waves were viewed in the same direction.

b. Their tilt angles are such that they are the negative of one another with respect to a common
reference.”

Since the polarization of an antenna will almost always be defined in its transmitting mode,
according to the IEEE Std 145-1993, “the receiving polarization may be used to specify the polar-
ization characteristic of a nonreciprocal antenna which may transmit and receive arbitrarily different
polarizations.”

The polarization loss must always be taken into account in the link calculations design of a com-
munication system because in some cases it may be a very critical factor. Link calculations of com-
munication systems for outer space explorations are very stringent because of limitations in space-
craft weight. In such cases, power is a limiting consideration. The design must properly take into
account all loss factors to ensure a successful operation of the system.

An antenna that is elliptically polarized is that composed of two crossed dipoles, as shown in
Figure 2.26. The two crossed dipoles provide the two orthogonal field components that are not

Figure 2.26  Geometry of elliptically polarized cross-dipole antenna.
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necessarily of the same field intensity toward all observation angles. If the two dipoles are identical,
the field intensity of each along zenith (perpendicular to the plane of the two dipoles) would be of
the same intensity. Also, if the two dipoles were fed with a 90° degree time-phase difference (phase
quadrature), the polarization along zenith would be circular and elliptical toward other directions.
One way to obtain the 90° time-phase difference A¢ between the two orthogonal field components,
radiated respectively by the two dipoles, is by feeding one of the two dipoles with a transmission
line which is A/4 longer or shorter than that of the other [A¢ = kAZ = 2z /N)(N/4) = z/2]. One
of the lengths (longer or shorter) will provide right-hand (CW) rotation while the other will provide
left-hand (CCW) rotation.

A MATLAB computer program Polarization_Propag is included at the end of the chapter, and
it computes the Poinaré sphere angles and the polarization of the wave radiated by an antenna and
traveling in an infinite homogeneous medium.

2.13 INPUT IMPEDANCE

Input impedance is defined as “the impedance presented by an antenna at its terminals or the ratio of
the voltage to current at a pair of terminals or the ratio of the appropriate components of the electric
to magnetic fields at a point.” In this section we are primarily interested in the input impedance at
a pair of terminals which are the input terminals of the antenna. In Figure 2.27(a) these terminals

Antenna /

[ a

[ —"

Generator

Radiated
(Zg) wave
| b —
(a) Antenna in transmitting mode
a
[ &
V
T N
Rg
| R,
X,
L b
X, —
(b) Thevenin equivalent
a
IQI ©, B, . @ B,
b

(c) Norton equivalent

Figure 2.27 Transmitting antenna and its equivalent circuits.
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are designated as a — b. The ratio of the voltage to current at these terminals, with no load attached,
defines the impedance of the antenna as

‘ Zy =R, +jX, (2-72)

Z, = antenna impedance at terminals a—b  (ohms)

where

R, = antenna resistance at terminals a—b  (ohms)

X, = antenna reactance at terminals a—b  (ohms)

In general the resistive part of (2-72) consists of two components; that is

Ry =R, +R, (2-73)

where
R, = radiation resistance of the antenna
R; = loss resistance of the antenna
The radiation resistance will be considered in more detail in later chapters, and it will be illustrated

with examples.
If we assume that the antenna is attached to a generator with internal impedance

Z, =R, +jX, (2-74)

where

R, = resistance of generator impedance (ohms)

X, = reactance of generator impedance (ohms)

and the antenna is used in the transmitting mode, we can represent the antenna and generator by an
equivalent circuit® shown in Figure 2.27(b). To find the amount of power delivered to R, for radiation
and the amount dissipated in R; as heat (I’R; /2), we first find the current developed within the loop
which is given by

Vg Vg Vg
I =% = _ _ 4) (2-75)
Zl‘ ZA +Zg (RF+RL+Rg) +J(XA +Xg)

and its magnitude by

1| = Vel
IR 4+ R+ R + (Xy + X,)?]1/2

(2-75a)

where V, is the peak generator voltage. The power delivered to the antenna for radiation is given by

(A R,
W) (2-76)

L2
P.=Z|LI’R, =
4 2|g| " 2 | R+ R, +R)* + (X4 +X,)?

*This circuit can be used to represent small and simple antennas. It cannot be used for antennas with lossy dielectric or
antennas over lossy ground because their loss resistance cannot be represented in series with the radiation resistance.
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and that dissipated as heat by

2
P = LI112R, = Vel i’ (W) (2-77)
278 2 [ (R, + R, + R+ (X4 +X,)?

The remaining power is dissipated as heat on the internal resistance R, of the generator, and it is
given by

P, = Vel Re (W) (2-78)
2 | (RARL+R)Y + (X, +X,)?

The maximum power delivered to the antenna occurs when we have conjugate matching; that
is when

R, +R, =R, (2-79)
X, =X, (2-80)
For this case
V> T R \As R
Pr — 8 r ] — 8 [ r ] (2-81)
2 |4R, +R,)? 8 |(R, +R))?
V> [ R,
= 2-82
R _(R,+RL)2] @52
VPR T VP ] VP .
¢ 8 [(R,+R)?] 8 |R+R.] S8R,
From (2-81)—(2-83), it is clear that
V|2 R IV,* [ R, +R
P,=P, +P =— [ £ ]: £ [ r L ] (2-84)
8 |(R, +R))? 8 |(R, +R))?

The power supplied by the generator during conjugate matching is

Ve |V, |?
1., .. 1 g g 1
P ==V.I'==-V = w 2-85
$T 37 T2 ng(R,+RL)] 4 [R,+RL] W) (2-85)

Of the power that is provided by the generator, half is dissipated as heat in the internal resis-
tance (R,) of the generator and the other half is delivered to the antenna. This only happens
when we have conjugate matching. Of the power that is delivered to the antenna, part is radi-
ated through the mechanism provided by the radiation resistance and the other is dissipated as
heat which influences part of the overall efficiency of the antenna. If the antenna is lossless and
matched to the transmission line (e, = 1), then half of the total power supplied by the gener-
ator is radiated by the antenna during conjugate matching, and the other half is dissipated as
heat in the generator. Thus, to radiate half of the available power through R, you must dis-
sipate the other half as heat in the generator through R,. These twopowers are, respectively,
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Figure 2.28 Antenna and its equivalent circuits in the receiving mode.

analogous to the power transferred to the load and the power scattered by the antenna in the receiving
mode. In Figure 2.27 it is assumed that the generator is directly connected to the antenna. If there
is a transmission line between the two, which is usually the case, then Z, represents the equivalent
impedance of the generator transferred to the input terminals of the antenna using the impedance
transfer equation. If, in addition, the transmission line is lossy, then the available power to be radi-
ated by the antenna will be reduced by the losses of the transmission line. Figure 2.27(c) illustrates
the Norton equivalent of the antenna and its source in the transmitting mode.

The use of the antenna in the receiving mode is shown in Figure 2.28(a). The incident wave
impinges upon the antenna, and it induces a voltage V which is analogous to V,, of the transmitting
mode. The Thevenin equivalent circuit of the antenna and its load is shown in Figure 2.28(b) and
the Norton equivalent in Figure 2.28(c). The discussion for the antenna and its load in the receiving
mode parallels that for the transmitting mode, and it will not be repeated here in detail. Some of the
results will be summarized in order to discuss some subtle points. Following a procedure similar to
that for the antenna in the transmitting mode, it can be shown using Figure 2.28 that in the receiving
mode under conjugate matching (R, + R; = Ry and X, = —X7) the powers delivered to Ry, R,., and
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R; are given, respectively, by

VAP R Vrl? Vrl?
Py = Vrl T _ Vel 1 _ IVl (2-86)
8 |(R +R,)? 8 \R, +R, SRy
VA?[ R V|2 R
p, = 1l . _ 1Vl . (2-87)
2 |4R, +R))? 8 |[(R +R))?
Vo2 R
P, = |Vrl i ] (2-88)
8 | (R, +Ry)?
while the induced (collected or captured) is
1 1 Vi V|2 1
R ) T[Z(R,+RL)] 4 \R. +R, (2-89)

These are analogous, respectively, to (2-81)—(2-83) and (2-85). The power P, of (2-87) delivered
to R, is referred to as scattered (or reradiated) power. It is clear through (2-86)—(2-89) that under
conjugate matching of the total power collected or captured [P,. of (2-89)] half is delivered to the load
Ry [Py of (2-86)] and the other half is scattered or reradiated through R,. [P, of (2-87)] and dissipated
as heat through R; [P of (2-88)]. If the losses are zero (R; = 0), then half of the captured power is
delivered to the load and the other half is scattered. This indicates that in order to deliver half of the
power to the load you must scatter the other half. This becomes important when discussing effective
equivalent areas and aperture efficiencies, especially for high directivity aperture antennas such as
waveguides, horns, and reflectors with aperture efficiencies as high as 80 to 90%. Aperture efficiency
(€4p) is defined by (2-100) and is the ratio of the maximum effective area to the physical area. The
effective area is used to determine the power delivered to the load, which under conjugate matching
is only one-half of that intercepted; the other half is scattered and dissipated as heat. For a lossless
antenna (R; = 0) under conjugate matching, the maximum value of the effective area is equal to the
physical area (¢,, = 1) and the scattering area is also equal to the physical area. Thus half of the
power is delivered to the load and the other half is scattered. Using (2-86) to (2-89) we conclude
that even though the aperture efficiencies are higher than 50% (they can be as large as 100%) all of
the power that is captured by the antenna is not delivered to the load but it includes that which is
scattered plus dissipated as heat by the antenna. The most that can be delivered to the load is only
half of that captured and that is only under conjugate matching and lossless transmission line.

The input impedance of an antenna is generally a function of frequency. Thus the antenna will
be matched to the interconnecting transmission line and other associated equipment only within
a bandwidth. In addition, the input impedance of the antenna depends on many factors including
its geometry, its method of excitation, and its proximity to surrounding objects. Because of their
complex geometries, only a limited number of practical antennas have been investigated analytically.
For many others, the input impedance has been determined experimentally.

2.14 ANTENNA RADIATION EFFICIENCY

The antenna efficiency that takes into account the reflection, conduction, and dielectric losses was
discussed in Section 2.8. The conduction and dielectric losses of an antenna are very difficult to
compute and in most cases they are measured. Even with measurements, they are difficult to separate
and they are usually lumped together to form the e ., efficiency. The resistance R; is used to represent
the conduction-dielectric losses.
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The conduction-dielectric efficiency e, is defined as the ratio of the power delivered to the radi-
ation resistance R, to the power delivered to R, and R;. Using (2-76) and (2-77), the radiation
efficiency can be written as

R, o
Ceq = [ R+ Rr] (dimensionless) (2-90)

For a metal rod of length / and uniform cross-sectional area A, the dc resistance is given by

Rp =1L (ohms) (2-90a)
cA

C

If the skin depth 6[6 = 1/2/(wpqo)] of the metal is very small compared to the smallest diagonal
of the cross section of the rod, the current is confined to a thin layer near the conductor surface.
Therefore the high-frequency resistance can be written, based on a uniform current distribution, as

[ I [opy
Ry = FRS = 5\ 25 (ohms) (2-90b)

where P is the perimeter of the cross section of the rod (P = C = 2xb for a circular wire of radius b),
R, is the conductor surface resistance,  is the angular frequency, u, is the permeability of free-space,
and o is the conductivity of the metal.

Example 2.13

A resonant half-wavelength dipole is made out of copper (¢ = 5.7 X 107S/m) wire. Determine
the conduction-dielectric (radiation) efficiency of the dipole antenna at f = 100 MHz if the radius
of the wire b is 3 X 107*A, and the radiation resistance of the A/2 dipole is 73 ohms.

Solution: At f = 108 Hz

v 3x108
A=-=22"=3m

f 108
l=&=§m

272

C=2xb=273x10"H\ =67 x 107*A

For a A/2 dipole with a sinusoidal current distribution R; = %Rhf where Ry is given by (2-90b).
See Problem 2.52. Therefore,

= 0.349 ohms

R o_Llp _ 025 z(108)(4z x 1077)
L= ™ 6rx 104 5.7 % 107

Thus,

e.q(dimensionless) = ﬁ =0.9952 = 99.52%

¢,4(dB) = 1010g,((0.9905) = —0.02
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2.15 ANTENNA VECTOR EFFECTIVE LENGTH AND EQUIVALENT AREAS

An antenna in the receiving mode, whether it is in the form of a wire, horn, aperture, array, dielectric
rod, etc., is used to capture (collect) electromagnetic waves and to extract power from them, as shown
in Figures 2.29(a) and (b). For each antenna, an equivalent length and a number of equivalent areas
can then be defined.

These equivalent quantities are used to describe the receiving characteristics of an antenna,
whether it be a linear or an aperture type, when a wave is incident upon the antenna.

2.15.1 Vector Effective Length

The effective length of an antenna, whether it be a linear or an aperture antenna, is a quantity that
is used to determine the voltage induced on the open-circuit terminals of the antenna when a wave
impinges upon it. The vector effective length £, for an antenna is usually a complex vector quantity

E-field of
plane wave

Direction of
propagation

12

12

|

(a) Dipole antenna in receiving mode

E-field of
plane wave

Direction of
propagation

Receiver

(b) Aperture antenna in receiving mode

Figure 2.29  Uniform plane wave incident upon dipole and aperture antennas.
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represented by

C(0,¢) =ayly(0,d) +a,1,(0, ) (2-91)

It should be noted that it is also referred to as the effective height. It is a far-field quantity and it is
related to the far-zone field E, radiated by the antenna, with current /;, in its terminals, by [13]—[18]

. . N
Eu = agEg + a¢E¢ = —Jn4—mfe€ (2-92)

The effective length represents the antenna in its transmitting and receiving modes, and it is par-
ticularly useful in relating the open-circuit voltage V. of receiving antennas. This relation can be
expressed as

=E'.?, (2-93)

where

V,. = open-circuit voltage at antenna terminals
E’ = incident electric field

¢, = vector effective length

In (2-93) V,. can be thought of as the voltage induced in a linear antenna of length #, when ¢, and E!
are linearly polarized [19], [20]. From the relation of (2-93) the effective length of a linearly polarized
antenna receiving a plane wave in a given direction is defined as “the ratio of the magnitude of the
open-circuit voltage developed at the terminals of the antenna to the magnitude of the electric-field
strength in the direction of the antenna polarization. Alternatively, the effective length is the length
of a thin straight conductor oriented perpendicular to the given direction and parallel to the antenna
polarization, having a uniform current equal to that at the antenna terminals and producing the same
far-field strength as the antenna in that direction.”

In addition, as shown in Section 2.12.2, the antenna vector effective length is used to determine
the polarization efficiency of the antenna. To illustrate the usefulness of the vector effective length,
let us consider an example.

Example 2.14
The far-zone field radiated by a small dipole of length / < A/10 and with a triangular current

distribution, as shown in Figure 4.4, is derived in Section 4.3 of Chapter 4 and it is given by
(4-36a), or

Ml
— S1n
9]’1 r

E =

a

o>

Determine the vector effective length of the antenna.
Solution: According to (2-92), the vector effective length is

?, = —ﬁeésine

This indicates, as it should, that the effective length is a function of the direction angle 6, and its
maximum occurs when 6 = 90°. This tells us that the maximum open-circuit voltage at the dipole
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terminals occurs when the incident direction of the wave of Figure 2.29(a) impinging upon the small
dipole antenna is normal to the axis (length) of the dipole (6 = 90°). This is expected since the
dipole has a radiation pattern whose maximum is in the # = 90°. In addition, the effective length of
the dipole to produce the same output open-circuit voltage is only half (50%) of its physical length
if it were replaced by a thin conductor having a uniform current distribution (it can be shown that
the maximum effective length of an element with an ideal uniform current distribution is equal to its
physical length).

2.15.2 Antenna Equivalent Areas

With each antenna, we can associate a number of equivalent areas. These are used to describe the
power capturing characteristics of the antenna when a wave impinges on it. One of these equivalent
areas is the effective area (aperture), which in a given direction is defined as “the ratio of the available
power at the terminals of a receiving antenna to the power flux density of a plane wave incident on
the antenna from that direction, the wave being polarization-matched to the antenna. If the direction
is not specified, the direction of maximum radiation intensity is implied.” In equation form it is
written as

P I:1*R/2
AE — T — | T| T/ (2_94)
W, W,

l l
where

A, = effective area (effective aperture) (m?)

Py = power delivered to the load (W)

W; = power density of incident wave (W/m?)

The effective aperture is the area which when multiplied by the incident power density gives the
power delivered to the load. Using the equivalent of Figure 2.28, we can write (2-94) as

_vyl? Ry

A =
A [(Rr +R, +Rp)?+ (X4 + XT)Z]

(2-95)

Under conditions of maximum power transfer (conjugate matching), R, + R; = Ry and X, = =X,
the effective area of (2-95) reduces to the maximum effective aperture given by

A = |VT|2 Ry _ |VT|2 1 (2-96)
o 8Wl (RL + Rr)2 8Wz Rr + RL

When (2-96) is multiplied by the incident power density, it leads to the maximum power delivered
to the load of (2-86).

All of the power that is intercepted, collected, or captured by an antenna is not delivered to the
load, as we have seen using the equivalent circuit of Figure 2.28. In fact, under conjugate matching
only half of the captured power is delivered to the load; the other half is scattered and dissipated as
heat. Therefore to account for the scattered and dissipated power we need to define, in addition to
the effective area, the scattering, loss and capture equivalent areas. In equation form these can be
defined similarly to (2-94)—(2-96) for the effective area.
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The scattering area is defined as the equivalent area when multiplied by the incident power density
is equal to the scattered or reradiated power. Under conjugate matching this is written, similar to
(2-96), as

A = |VT|2 Rr
= (2:97)
8W, (R, +R,?

which when multiplied by the incident power density gives the scattering power of (2-87).

The loss area is defined as the equivalent area, which when multiplied by the incident power
density leads to the power dissipated as heat through R; . Under conjugate matching this is written,
similar to (2-96), as

v [ R ] (2.98)

A =
LW (R, +R)?

which when multiplied by the incident power density gives the dissipated power of (2-88).

Finally the capture area is defined as the equivalent area, which when multiplied by the incident
power density leads to the total power captured, collected, or intercepted by the antenna. Under
conjugate matching this is written, similar to (2-96), as

A

Ve [Rr+R.+R
_ V7l [T r R (2-99)

7 8W;, | (R +R)?

When (2-99) is multiplied by the incident power density, it leads to the captured power of (2-89). In
general, the total capture area is equal to the sum of the other three, or

Capture Area = Effective Area + Scattering Area + Loss Area

This is apparent under conjugate matching using (2-96)—(2-99). However, it holds even under non-
conjugate matching conditions.

Now that the equivalent areas have been defined, let us introduce the aperture efficiency €,, of
an antenna, which is defined as the ratio of the maximum effective area A,,, of the antenna to its
physical area A,,, or

A maximum effective area
Eap = Aem - physical area (2-100)
P

For aperture type antennas, such as waveguides, horns, and reflectors, the maximum effective area
cannot exceed the physical area but it can equal it (A,,, <A, or 0 < £,, < 1). Therefore the maxi-
mum value of the aperture efficiency cannot exceed unity (100%). For a lossless antenna (R; = 0)
the maximum value of the scattering area is also equal to the physical area. Therefore even though
the aperture efficiency is greater than 50%, for a lossless antenna under conjugate matching only
half of the captured power is delivered to the load and the other half is scattered.

We can also introduce a partial effective area of an antenna for a given polarization in a given
direction, which is defined as “the ratio of the available power at the terminals of a receiving antenna
to the power flux density of a plane wave incident on the antenna from that direction and with a
specified polarization differing from the receiving polarization of the antenna.”

The effective area of an antenna is not necessarily the same as the physical aperture. It will be
shown in later chapters that aperture antennas with uniform amplitude and phase field distributions
have maximum effective areas equal to the physical areas; they are smaller for nonuniform field
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distributions. In addition, the maximum effective area of wire antennas is greater than the physical
area (if taken as the area of a cross section of the wire when split lengthwise along its diameter).
Thus the wire antenna can capture much more power than is intercepted by its physical size! This
should not come as a surprise. If the wire antenna would only capture the power incident on its
physical size, it would be almost useless. So electrically, the wire antenna looks much bigger than
its physical stature.

To illustrate the concept of effective area, especially as applied to a wire antenna, let us consider
an example. In later chapters, we will consider examples of aperture antennas.

Example 2.15
A uniform plane wave is incident upon a very short lossless dipole (/ < A), as shown in Fig-
ure 2.29(a). Find the maximum effective area assuming that the radiation resistance of the dipole
is R, = 80(xl/}\)?, and the incident field is linearly polarized along the axis of the dipole.
Solution: For R; = 0, the maximum effective area of (2-96) reduces to

A =|VT|2 [i]
o~ 8w, |R

r

Since the dipole is very short, the induced current can be assumed to be constant and of uniform
phase. The induced voltage is

where

Vr = induced voltage on the dipole
E = electric field of incident wave

[ = length of dipole

For a uniform plane wave, the incident power density can be written as

2
2n

where # is the intrinsic impedance of the medium (~120z ohms for a free-space medium). Thus

El 2 2
Ay = (ED =3 _ o192
8(E2/2n)(807212/22) 8=

The above value is only valid for a lossless antenna (the losses of a short dipole are usually signif-
icant). If the loss resistance is equal to the radiation resistance (R; = R,) and the sum of the two is
equal to the load (receiver) resistance (R = R, + R; = 2R,), then the effective area is only one-half
of the maximum effective area given above.

Let us now examine the significance of the effective area. From Example 2.15, the maximum
effective area of a short dipole with / < A was equal to A,,, = 0.1192%. Typical antennas that fall
under this category are dipoles whose lengths are / < A/50. For demonstration, let us assume that
1 =1/50. Because A,,, = 0.1192? = lw, = (A/50)w,, the maximum effective electrical width of
this dipole is w, = 5.95\. Typical physical diameters (widths) of wires used for dipoles may be
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#1 L . #2
Direction of propagation
of wave
Atm’ D, t Arm’ D r
| x |
Transmitter Receiver

Figure 2.30  Two antennas separated by a distance R.

about w;, = 4/300. Thus the maximum effective width w, is about 1,785 times larger than its phys-
ical width.

2.16 MAXIMUM DIRECTIVITY AND MAXIMUM EFFECTIVE AREA

To derive the relationship between directivity and maximum effective area, the geometrical arrange-
ment of Figure 2.30 is chosen. Antenna 1 is used as a transmitter and 2 as a receiver. The effective
areas and directivities of each are designated as A;,A, and D,, D,. If antenna 1 were isotropic, its
radiated power density at a distance R would be

"~ 4zR?

A (2-101)

where P, is the total radiated power. Because of the directive properties of the antenna, its actual
density is

— Wy, = P 2-102
Wt = WO = W ( - )
The power collected (received) by the antenna and transferred to the load would be
_ _ PDA,
P.=WA, = P (2-103)
or
P, )
DA, = F(4”R ) (2-103a)
t

If antenna 2 is used as a transmitter, 1 as a receiver, and the intervening medium is linear, passive,
and isotropic, we can write that

DA—P’4R2 2-104
”_F(” ) (2-104)
t
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Equating (2-103a) and (2-104) reduces to

>

D r _ r
— = (2-105)
A, A,

Increasing the directivity of an antenna increases its effective area in direct proportion. Thus,
(2-105) can be written as

Do: _ Doy

A A

(2-106)

tm rm

where A,,, and A,,, (D, and D,,.) are the maximum effective areas (directivities) of antennas 1 and
2, respectively.
If antenna 1 is isotropic, then D, = 1 and its maximum effective area can be expressed as

Arm
= 2-107
m Dor ( )

A

Equation (2-107) states that the maximum effective area of an isotropic source is equal to the ratio
of the maximum effective area to the maximum directivity of any other source. For example, let the
other antenna be a very short ( < ) dipole whose effective area (0.1192% from Example 2.15) and
maximum directivity (1.5) are known.

The maximum effective area of the isotropic source is then equal to

AL 011902 2

A, = = 2-108
™" Dy, 1.5 4r ( )
Using (2-108), we can write (2-107) as
}\2
Arm = DOrAtm = DOr <E> (2-109)

In general then, the maximum effective aperture (A,,,) of any antenna is related to its maximum
directivity (Dg) by

2
Aem = i\‘_DO (2—110)
T

Thus, when (2-110) is multiplied by the power density of the incident wave it leads to the maximum
power that can be delivered to the load. This assumes that there are no conduction-dielectric losses
(radiation efficiency e, is unity), the antenna is matched to the load (reflection efficiency e, is unity),
and the polarization of the impinging wave matches that of the antenna (polarization loss factor PLF
and polarization efficiency p, are unity). If there are losses associated with an antenna, its maximum
effective aperture of (2-110) must be modified to account for conduction-dielectric losses (radiation
efficiency). Thus,

}\2
y— <E>D0 (2-111)

The maximum value of (2-111) assumes that the antenna is matched to the load and the incoming
wave is polarization-matched to the antenna. If reflection and polarization losses are also included,
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then the maximum effective area of (2-111) is represented by

A2 A A2
Aem=eO 4r D()lpw'pal
(2-112)

A2 A A
= e (1-1T% <E> Dylp,, - Pl

2.17 FRIIS TRANSMISSION EQUATION AND RADAR RANGE EQUATION

The analysis and design of radar and communications systems often require the use of the Friis
Transmission Equation and the Radar Range Equation. Because of the importance [21] of the two
equations, a few pages will be devoted for their derivation.

2.17.1 Friis Transmission Equation

The Friis Transmission Equation relates the power received to the power transmitted between two
antennas separated by a distance R > 2D?/A, where D is the largest dimension of either antenna.
Referring to Figure 2.31, let us assume that the transmitting antenna is initially isotropic. If the
input power at the terminals of the transmitting antenna is P,, then its isotropic power density W, at
distance R from the antenna is

P

W, =e,—— 2-113
0 et47l'R2 ( )

where ¢, is the radiation efficiency of the transmitting antenna. For a nonisotropic transmitting
antenna, the power density of (2-113) in the direction 6,, ¢, can be written as

W, = P,G,(0,, ¢, _ P.D,(6,,¢,)

=e
! 47R? " 4xR?

(2-114)

where G,(0,, ¢,) is the gain and D,(6,, ¢,) is the directivity of the transmitting antenna in the direction
0,, ¢,. Since the effective area A,. of the receiving antenna is related to its efficiency e, and directivity
D, by

2
A, =eD.0,,,) <i‘—ﬂ) (2-115)

Transmitting antenna
(P, Gy, Dy ecqp T P

< R > Receiving antenna
A
(Pr’ Gr’ Dr’ €cdrs l_‘r’ pr)

Figure 2.31 Geometrical orientation of transmitting and receiving antennas for Friis transmission equation.
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the amount of power P, collected by the receiving antenna can be written, using (2-114) and
(2-115), as

22 A*D,(0,,¢,)D,(0,. 4P, .
P, = ¢,D,(0,, )7 =W, = e1e,—— (4;162 =D, B, (2-116)
or the ratio of the received to the input power as
P A2D,(6,,$,)D,(0,,
Pr _ o0 MDUO00D(0).91) o)
P, (47R)?

The power received based on (2-117) assumes that the transmitting and receiving antennas are
matched to their respective lines or loads (reflection efficiencies are unity) and the polarization of
the receiving antenna is polarization-matched to the impinging wave (polarization loss factor and
polarization efficiency are unity). If these two factors are also included, then the ratio of the received
to the input power of (2-117) is represented by

Pr 2 2 A 2 A A2
F = ecdtecdr(l - |Ft| )(1 - |Fr| )<477,'_R> Dt(et’ d’[)Dr(er» ¢r)|pt : prl (2-118)

t

Example 2.16

Two lossless X-band (8.2—12.4 GHz) horn antennas are separated by a distance of 100A. The
reflection coefficients at the terminals of the transmitting and receiving antennas are 0.1 and
0.2, respectively. The maximum directivities of the transmitting and receiving antennas (over
isotropic) are 16 dB and 20 dB, respectively. Assuming that the input power in the lossless
transmission line connected to the transmitting antenna is 2 W, and the antennas are aligned for
maximum radiation between them and are polarization-matched, find the power delivered to the
load of the receiver.
Solution: For this problem

€.q = €.qr = 1 because the antennas are lossless.
|0, - f),l2 = 1 because the antennas are polarization-matched
D, = Dy, because the antennas are aligned for
D, = DO,}
Dy, = 16 dB = 39.81 (dimensionless)
D, = 20 dB = 100 (dimensionless)

maximum radiation between them

Using (2-118), we can write

P, = [1 — (0.1)*][1 — (0.2)*1[A/4z(100A)]*(39.81)(100)(2)
=4.777 mW
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For reflection and polarization-matched antennas aligned for maximum directional radiation and
reception, (2-118) reduces to

P, A o\2
() oo
t

Equations (2-117), (2-118), or (2-119) are known as the Friis Transmission Equation, and it relates
the power P, (delivered to the receiver load) to the input power of the transmitting antenna P,. The
term (A/47R)? is called the free-space loss factor, and it takes into account the losses due to the
spherical spreading of the energy by the antenna.

2.17.2 Radar Range Equation

Now let us assume that the transmitted power is incident upon a target, as shown in Figure 2.32.
We now introduce a quantity known as the radar cross section or echo area (o) of a target which is
defined as the area intercepting that amount of power which, when scattered isotropically, produces
at the receiver a density which is equal to that scattered by the actual target [13]. In equation form

. O-Wl
A | =V 10
or
ES 2
o= lim |47R*—=| = lim 47[R2| ,'
—00 ; R—co IEll2
|2 (2-120a)
= lim |47R*—
Ro>oo |H1|2
where

o = radar cross section or echo area  (m?)
R = observation distance from target (m)
W; = incident power density (W/m?)
W
E! (E%)
H! (H*) = incident (scattered) magnetic field (A/m)

scattered power density (W/m?)

incident (scattered) electric field (V/m)

Any of the definitions in (2-120a) can be used to derive the radar cross section of any antenna or
target. For some polarization one of the definitions based either on the power density, electric field,
or magnetic field may simplify the derivation, although all should give the same answers [13].

Using the definition of radar cross section, we can consider that the transmitted power incident
upon the target is initially captured and then it is reradiated isotropically, insofar as the receiver is
concerned. The amount of captured power P,. is obtained by multiplying the incident power density
of (2-114) by the radar cross section o, or

b o _ PGOb) _ PD6,.$)
¢ ! 47[R% ! 47[R%

2-121)
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Figure 2.32  Geometrical arrangement of transmitter, target, and receiver for radar range equation.

The power captured by the target is reradiated isotropically, and the scattered power density can
be written as

P P.D,0,,
= m = ecd,aM (2-122)
2

S

(47TR1R2)2

The amount of power delivered to the receiver load is given by

Pr = ArWs = €cdi€cdr®

2
P,Dt(9t,¢t)Dr(9r,¢r)< A > (2-123)

where A, is the effective area of the receiving antenna as defined by (2-115).
Equation (2-123) can be written as the ratio of the received power to the input power, or

2
Pr Dt(et’ d)t)Dr(er’ ¢r) < }» > (2_124)

= é€,.4€.1.0
cdicdr 4z 47TR1R2

|

t

Expression (2-124) is used to relate the received power to the input power, and it takes into account
only conduction-dielectric losses (radiation efficiency) of the transmitting and receiving antennas. It
does not include reflection losses (reflection efficiency) and polarization losses (polarization loss fac-
tor or polarization efficiency). If these two losses are also included, then (2-124) must be expressed as

P D,(0,, $,)D.(0,, p,)
F: = ec’dtecdr(l — |Ft|2)(1 - |Fr|2)6 — t4ﬂ'r —

2 2

A A2
)( —_— .
<4HR1R2> [Py - Pl

(2-125)

where
p,, = polarization unit vector of the scattered waves

P, = polarization unit vector of the receiving antenna
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For polarization-matched antennas aligned for maximum directional radiation and reception,
(2-125) reduces to

(2-126)

GOtGOr[ A ]2

Pr
Pl‘ 4z 471'R1R2

Equation (2-124), or (2-125) or (2-126) is known as the Radar Range Equation. It relates the power
P, (delivered to the receiver load) to the input power P, transmitted by an antenna, after it has been
scattered by a target with a radar cross section (echo area) of o.

2.17.3 Antenna Radar Cross Section

The radar cross section, usually referred to as RCS, is a far-field parameter, which is used to char-
acterize the scattering properties of a radar target. For a target, there is monostatic or backscatter-
ing RCS when the transmitter and receiver of Figure 2.32 are at the same location, and a bistatic
RCS when the transmitter and receiver are not at the same location. In designing low-observable
or low-profile (stealth) targets, it is the parameter that you attempt to minimize. For complex tar-
gets (such as aircraft, spacecraft, missiles, ships, tanks, automobiles) it is a complex parameter to
derive. In general, the RCS of a target is a function of the polarization of the incident wave, the
angle of incidence, the angle of observation, the geometry of the target, the electrical properties
of the target, and the frequency of operation. The units of RCS of three-dimensional targets are
meters squared (m?) or for normalized values decibels per squared meter (dBsm) or RCS per squared
wavelength in decibels (RCS/A? in dB). Representative values of some typical targets are shown in
Table 2.2 [22]. Although the frequency was not stated [22], these numbers could be representative
at X-band.

The RCS of a target can be controlled using primarily two basic methods: shaping and the
use of materials. Shaping is used to attempt to direct the scattered energy toward directions other
than the desired. However, for many targets shaping has to be compromised in order to meet other
requirements, such as aerodynamic specifications for flying targets. Materials is used to trap the
incident energy within the target and to dissipate part of the energy as heat or to direct it toward
directions other than the desired. Usually both methods, shaping and materials, are used together in
order to optimize the performance of a radar target. One of the “golden rules” to observe in order to

TABLE 2.2 RCS of Some Typical Targets

Typical RCSs [22]

Object RCS (m?) RCS (dBsm)
Pickup truck 200 23
Automobile 100 20
Jumbo jet airliner 100 20
Large bomber or commercial jet 40 16
Cabin cruiser boat 10 10
Large fighter aircraft 6 7.78
Small fighter aircraft or four-passenger jet 2 3
Adult male 1 0
Conventional winged missile 0.5 -3
Bird 0.01 -20
Insect 0.00001 =50

Advanced tactical fighter 0.000001 —60
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achieve low RCS is to “round corners, avoid flat and concave surfaces, and use material treatment
in flare spots.”

There are many methods of analysis to predict the RCS of a target [13], [22]-[33]. Some of
them are full-wave methods, others are designated as asymptotic methods, either low-frequency or
high-frequency, and some are considered as numerical methods. The methods of analysis are often
contingent upon the shape, size, and material composition of the target. Some targets, because of their
geometrical complexity, are often simplified and are decomposed into a number of basic shapes (such
as strips, plates, cylinders, cones, wedges) which when put together represent a very good replica of
the actual target. This has been used extensively and proved to be a very good approach. The topic
is very extensive to be treated here in any detail, and the reader is referred to the literature [13],
[22]—[33]. There is a plethora of references but because of space limitations, only a limited number
is included here to get the reader started on the subject.

Antennas individually are radar targets which many exhibit large radar cross section. In many
applications, antennas are mounted on the surface of other complex targets (such as aircraft, space-
craft, satellites, missiles, automobiles), and become part of the overall radar target. In such configu-
rations, many antennas, especially aperture types (such as waveguides, horns) become large contrib-
utors to the total RCS, monostatic or bistatic, of the target. Therefore, in designing low-observable
targets, the antenna type, location and contributions become an important consideration of the over-
all design.

The scattering and transmitting (radiation) characteristics of an antenna are related [34]—[36].
There are various methods which can be used to analyze the fields scattered by an antenna. The
summary here parallels that in [23], [37]—[40]. In general, the electric field scattered by an antenna
with a load impedance Z; can be expressed by

s Ky IS ZL
E(Z)=E@0) -+

L g (2-127)
1,7, +7,

where
E’(Z;) = electric field scattered by antenna with a load Z;
E*(0) = electric field scattered by short-circuited antenna (Z; = 0)
I, = short-circuited current induced by the incident field on the antenna with Z; =0
I, = antenna current in transmitting mode
Z, =R, +jX, = antenna input impedance

E! = electric field radiated by the antenna in transmitting mode

Green [37] expressed the field scattered by an antenna terminated with a load Z; in a more
convenient form which allows it to be separated into the structural and antenna mode scattering
terms [23], [37]-[40]. This is accomplished by assuming that the antenna is loaded with a conjugate-
matched impedance (Z; = ZZ).

e The structural scattering term is introduced by the currents induced on the surface of the
antenna by the incident field when the antenna is conjugate-matched, and it is independent of
the load impedance.

e The antenna mode scattering term is only a function of the radiation characteristics of the
antenna, and its scattering pattern is the square of the antenna radiation pattern.

The antenna mode depends on the power absorbed by the load of a lossless antenna and the
power that is radiated by the antenna due to a load mismatch. This term vanishes when the antenna
is conjugate-matched.
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In general, the field scattered by an antenna loaded with an impedance Z; is related to the field
radiated by the antenna in the transmitting mode in three different ways.

e First, the field scattered by an antenna when it is loaded with an impedance Z; is equal to the
field scattered by the antenna when it is short-circuited (Z; = 0) minus a term related to the
antenna reflection coefficient and the field transmitted by the antenna.

e Second, the field scattered by an antenna when it is terminated with an impedance Z; is equal
to the field scattered by the antenna when it is conjugate-matched with an impedance Z: minus
the field transmitted (radiated) times the conjugate reflection coefficient.

® Third, the field scattered by the antenna when it is terminated with an impedance Z; is equal
to the field scattered by the antenna when it is matched with an impedance Z, minus the field
transmitted (radiated) times the reflection coefficient weighted by the ratio of two currents
(1,/1,,1, = scattering current when antenna is matched with an impedance Z; , I, = antenna
current in the transmitting mode).

It can be shown that the total radar cross section of an antenna terminated with a load Z; can be
written as [40]

o = [Vos = (1 + T ) Vol |? (2-128)

where

o = total RCS with antenna terminated with Z;
¢* = RCS due to structural term
% = RCS due to antenna mode term

¢, = relative phase between the structural and antenna mode terms
If the antenna is short-circuited (I'y = —1), then according to (2-128)
Cehort = 0 (2-129)

If the antenna is open-circuited (I'y = +1), then according to (2-128)

Gopen = V05 =269 |* = 6,41 (2-130)

Lastly, if the antenna is matched Z; = Z,(I"4 = 0), then according to (2-128)

Ormach = | Vo5 = Votel?r|? (2-131)

Therefore, under matched conditions, according to (2-131), the range of values (minimum to maxi-
mum) of the radar cross section is

Vo' = Vo <o < [Vor + Vol (2-132)

The minimum value occurs when the two RCSs are in phase while the maximum occurs when they
are out of phase.



FRIIS TRANSMISSION EQUATION AND RADAR RANGE EQUATION 95

Example 2.17

The structural RCS of a resonant wire dipole is in phase and its magnitude is slightly greater
than four times that of the antenna mode. Relate the short-circuited, open-circuited, and matched
RCSs to that of the antenna mode.

Solution: Using (2-129)

G = P
Using (2-130)
Oopen = 20antenna(0) = 0 or very small

The matched value is obtained using (2-131), or

Omatch = Oantenna

To produce a zero RCS, (2-128) must vanish. This is accomplished if

Re(I'y) = -1+ cos¢,\/o°/c¢ (2-133a)
ImT’,) = —sin ¢, \/6° /¢ (2-133b)

Assuming positive values of resistances, the real value of I'y cannot be greater than unity. There-
fore there are some cases where the RCS cannot be reduced to zero by choosing Z; . Because Z, can
be complex, there is no limit on the imaginary part of I'.

In general, the structural and antenna mode scattering terms are very difficult to predict and
usually require that the antenna is solved as a boundary-value problem. However, these two terms
have been obtained experimentally utilizing the Smith chart [37]-[39].

For a monostatic system the receiving and transmitting antennas are collocated. In addition, if
the antennas are identical (G, = Gy, = G,) and are polarization-matched (p, = p, = 1), the total
radar cross section of the antenna for backscattering can be written as

2

_ 02 2
o= EGolA — I (2-134)

where A is a complex parameter independent of the load.
If the antenna is a thin dipole, then A ~ 1 and (2-134) reduces to

2 2

) 3 7, -7
o~ L2 -T*P = LG |1 - A
4 4z ZL +ZA
2 2R, |
=G |—=2 (2-135)
4 ZL+ZA

If in addition we assume that the dipole is resonant and its length is / = Ay/2 and is short-circuited
(Z;, = 0), then the normalized radar cross section of (2-135) is equal to

GS  (1.643)?
o 2o UOBF 8503~ 0,86 (2-136)
}% T bl
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u ——— Short-circuited 3.7465 cm long “ 0.2362 cm diameter
BT Open-circuited Frequency = 4.02 GHz
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Incidence angle (degrees)
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Figure 2.33  E-plane monostatic RCS (o,,) versus incidence angle for a half-wavelength dipole.

which agrees with experimental corresponding maximum monostatic value of Figure 2.33 and those
reported in the literature [41], [42].

Shown in Figure 2.33 is the measured E-plane monostatic RCS of a half-wavelength dipole when
it is matched to a load, short-circuited (straight wire) and open-circuited (gap at the feed). The aspect
angle is measured from the normal to the wire. As expected, the RCS is a function of the observation
(aspect) angle. Also it is apparent that there are appreciable differences between the three responses.
For the short-circuited case, the maximum value is approximately —24 dBsm which closely agrees
with the computed value of —22.5 dBsm using (2-136). Similar responses for the monostatic RCS
of a pyramidal horn are shown in Figure 2.34(a) for the E-plane and in Figure 2.34(b) for the H-
plane. The antenna is a commercial X-band (8.2-12.4 GHz) 20-dB standard gain horn with aperture
dimension of 9.2 cm by 12.4 cm. The length of the horn is 25.6 cm. As for the dipole, there are
differences between the three responses for each plane. It is seen that the short-circuited response
exhibits the largest return.

Antenna RCS from scale model measurements [43] and microstrip patches [44], [45] have
been reported.

2.18 ANTENNA TEMPERATURE
Every object with a physical temperature above absolute zero (0 K = —273°C) radiates energy [6].
The amount of energy radiated is usually represented by an equivalent temperature 7, better known

as brightness temperature, and it is defined as

Ty(6,¢) = €0, H)T,, = (1 - |T1))T,, (2-137)
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where

Ty = brightness temperature (equivalent temperature; K)
€ = emissivity (dimensionless)
T,, = molecular (physical) temperature (K)

I'(6, ¢) = reflection coefficient of the surface for the polarization of the wave

Since the values of emissivity are 0 < € < 1, the maximum value the brightness temperature can
achieve is equal to the molecular temperature. Usually the emissivity is a function of the frequency
of operation, polarization of the emitted energy, and molecular structure of the object. Some of
the better natural emitters of energy at microwave frequencies are (a) the ground with equivalent
temperature of about 300 K and (b) the sky with equivalent temperature of about 5 K when looking
toward zenith and about 100—150 K toward the horizon.

The brightness temperature emitted by the different sources is intercepted by antennas, and it
appears at their terminals as an antenna temperature. The temperature appearing at the terminals of
an antenna is that given by (2-137), after it is weighted by the gain pattern of the antenna. In equation
form, this can be written as

2z T
/ / T4(0, $)G(0, §) sin 0 d0 dp
_JO 0

2 V.4
/ / G(0,¢)sinfdO dgp
0 0
where

T, = antenna temperature (effective noise temperature of the antenna radiation
resistance; K)

T, (2-138)

G(0, ¢) = gain (power) pattern of the antenna

Assuming no losses or other contributions between the antenna and the receiver, the noise power
transferred to the receiver is given by

P, = kT,\Af (2-139)

where
P, = antenna noise power (W)

k = Boltzmann’s constant  (1.38 x 10723 J/K)
T, = antenna temperature  (K)
Af = bandwidth (Hz)

If the antenna and transmission line are maintained at certain physical temperatures, and the
transmission line between the antenna and receiver is lossy, the antenna temperature 7, as seen
by the receiver through (2-139) must be modified to include the other contributions and the line
losses. If the antenna itself is maintained at a certain physical temperature 7}, and a transmission
line of length /, constant physical temperature 7|, throughout its length, and uniform attenuation of
a (Np/unit length) is used to connect an antenna to a receiver, as shown in Figure 2.35, the effective
antenna temperature at the receiver terminals is given by

T, = Tye > 4+ Type 2 + Ty(1 — e72%) (2-140)
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Figure 2.35 Antenna, transmission line, and receiver arrangement for system noise power calculation.

where

Typ = <i — 1) T, (2-140a)
€A
T, = antenna temperature at the receiver terminals (K)
T, = antenna noise temperature at the antenna terminals (2-138) (K)
T,p = antenna temperature at the antenna terminals due to physical temperature (2-140a) (K)
T, = antenna physical temperature (K)
a = attenuation coefficient of transmission line (Np/m)
e, = thermal efficiency of antenna (dimensionless)
| = length of transmission line (m)

T,) = physical temperature of the transmission line (K)

The antenna noise power of (2-139) must also be modified and written as

P, = kT,Af (2-141)

where T, is the antenna temperature at the receiver input as given by (2-140).
If the receiver itself has a certain noise temperature 7, (due to thermal noise in the receiver
components), the system noise power at the receiver terminals is given by

P, = kT, + T,)Af = kT,Af (2-142)

where
P, = system noise power (at receiver terminals)

T, = antenna noise temperature (at receiver terminals)
T, = receiver noise temperature (at receiver terminals)

T,=T,+ T, = effective system noise temperature (at receiver terminals)

A graphical relation of all the parameters is shown in Figure 2.35. The effective system noise
temperature 7 of radio astronomy antennas and receivers varies from very few degrees (typically ~
10 K) to thousands of Kelvins depending upon the type of antenna, receiver, and frequency of opera-
tion. Antenna temperature changes at the antenna terminals, due to variations in the target emissions,
may be as small as a fraction of one degree. To detect such changes, the receiver must be very sen-
sitive and be able to differentiate changes of a fraction of a degree.
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Example 2.18

The effective antenna temperature of a target at the input terminals of the antenna is 150 K.
Assuming that the antenna is maintained at a thermal temperature of 300 K and has a thermal
efficiency of 99% and it is connected to a receiver through an X-band (8.2—12.4 GHz) rectangular
waveguide of 10 m (loss of waveguide = 0.13 dB/m) and at a temperature of 300 K, find the
effective antenna temperature at the receiver terminals.

Solution: We first convert the attenuation coefficient from dB to Np by a(dB/m) =
20(log;( e)a(Np/m) = 20(0.434)a(Np/m) = 8.68a(Np/m). Thus a(Np/m) = a(dB/m)/8.68 =
0.13/8.68 = 0.0149. The effective antenna temperature at the receiver terminals can be written,
using (2-140a) and (2-140), as

1
T =300(——1) =303
AP 0.99

T, = 150e~01492) 4 3,03¢701499) 4 300[1 — ¢~ 0149@)]
= 111.345 +2.249 + 77.31 = 190.904 K

The results of the above example illustrate that the antenna temperature at the input terminals
of the antenna and at the terminals of the receiver can differ by quite a few degrees. For a smaller
transmission line or a transmission line with much smaller losses, the difference can be reduced
appreciably and can be as small as a fraction of a degree.

A summary of the pertinent parameters and associated formulas and equation numbers for this
chapter are listed in Table 2.3.

2.19 MULTIMEDIA

In the website created by the publisher for this book, the following multimedia resources are included
for the review, understanding, and visualization of the material of this chapter:

a. Java-based interactive questionnaire, with answers.

b. Java-based applet for computing and displaying graphically the directivity of an antenna.

c. Matlab and Fortran computer program, designated Directivity, for computing the directivity
of an antenna. A description of this program is in the READ ME file in the publisher’s website
for this book.

d. Matlab plotting computer programs:

e 2-D Polar (designated as Polar). This program can be used to plot the two-dimensional
patterns, in both polar and semipolar form (in linear or dB scale), of an antenna.

e 3-D Spherical. This program (designated as Spherical) can be used to plot the three-
dimensional pattern (in linear or dB scale) of an antenna in spherical form.

¢ Polarization_Diagram_Ellipse_Animation: Animates the 3-D polarization diagram of a
rotating electric field vector [Figure 2.23(a)]. It also animates the 2-D polarization ellipse
[Figure 2.23(b)] for linear, circular and elliptical polarized waves, and sense of rotation. It
also computes the axial ratio (AR).

¢ Polarization_Propag: Computes the Poincaré sphere angles, and thus the polarization wave
travelling in an infinite homogeneous medium.

A description of these programs is in the corresponding READ ME files in the publisher’s

website for this book.

e. Power Point (PPT) viewgraphs, in multicolor.
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TABLE 2.3  Summary of Important Parameters and Associated Formulas and Equation Numbers

Equation
Parameter Formula Number
Infinitesimal area of sphere dA = r*sin6 do d¢ (2-1)
Elemental solid angle of sphere dQ =sin0db d¢ (2-2)
Average power density W, = %Re[E x H*] (2-8)
Radiated power/average radiated power P, =P, = # W, -ds= % ﬂ Re[E x H*] - ds (2-9)
P s s
Radiation density of isotropic radiator W, = 7 "”12 (2-11)
r
2
Radiation intensity (far field) U=r*W,, =ByF(0,p) ~ ;— (2-12)
n )
X [|Eo(r, 0, )| + |E,(r, 0, $)I?] (2-12a)
Directivity D(6, ¢) p=Y _4U_ix (2-16),
Uy P 4 (2-23)
27 4
Beam solid angle Q Q, = / / F,(0,¢)sin0d0d¢
A A o Jo (2-24)
F(, .
F.(0,¢) = 0, 9) (2-25)
[F(8, @) max
4
Maximum directivity D, D =Dy = Lo _ 30 (2-162)
Partial directivities Dy, D Yoo F
artial directivities Dy, D, Dy=D,+D,
(2-17)
_ 4nU, 4rU,
’ Pmd (Prad)B + (Prad)d) (2-173)
4 4
B 7rU¢ B n'U¢ (2-17b)

- Pmd B (Pmd)l‘} + (Pmd)¢

Approximate maximum directivity o = 4n = 41,253 (2-26),
(one main lobe pattern) 0,0, 0,0y 2.27)
(Kraus) -
(2-30),
322 22181 _ 72815
o G)%r + @%r G)%r + G)gr G%d + ng (2'303),
(Tai-Pereira) (2-30b)
Approximate maximum directivity D, ~ 101 5
(omnidirectional pattern) HP]?I:/[V(I(;egreleds)) ~ 0.0027[HPBW (degrees)]
cDona (2-33a)
1
Dy~ —-1724+191,/0.818 + ———— 2-33b
0 \/ HPBW (degrees) ( )
(Pozar)

(continued overleaf)
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TABLE 2.3 (continued)

Equation
Parameter Formula Number
4zU(0, 4zU(0, -
G=2ved _ [M] N )
Gain G(6, ¢) Pi, Praa (2-47)
Prad = echin (2'49)
. _ R,
Antenna radiation efficiency e, e = R+R (2-90)
. [ @WH
Loss resistance R, R, =Ry, = A (2-90b)
(straight wire/uniform current) o
. . . l ()7
Loss resistance R, (straight wire/ L=55\ 25
A/2 dipole) o
Maximum gain G, Gy = e 4Dy = Dy (2-49a)
Partial gains G,, G, Gy =Gy + Gy (2-50)
_4xU, o 4zU, (2-50a),
‘P, TP, (2-50b)
Realized gain G, G, = ¢,G(0.9) = ,e,,D©0.$) = (1 = [T)e, DO.§) (2-49)
= ¢gD(0, $) (2-49b)
Total antenna efficiency e ey =ee.e;=ee,=(1-|TPey, (2-52)
Reflection efficiency e, e, =(1—|TP (2-45)
2r 0y
/ / U9, p)sin0do dp
Beam efficiency BE BE = = ——" (2-54)
/ / U9, ¢p)sin6do dp
o Jo
Polarization loss factor (PLF) PLF = |p,, - p,|? 2-71)
Vector effective length Z,(0, ¢) C,(0,9) = 8,1y, ) + 4,100, ) (2-91)
£ - E[nc 2
Polarization efficiency p, p. = W (2-71a)
. _ —_— . (2-72),
Antenna impedance Z, Zy =R, +jX, =R, +R))+jX,
(2-73)
2
Maximum effective area A,,, A, = Vel 1 =e, <}‘_2) Dylp,, - b,I? (2-96).
8W, [R, +R, 4x @2-111)
= (£) 6, - . ’
4 ) O Fe (2-112)
A . .
Aperture efficiency ¢, £y = —0 = max1mum.effect1ve area (2-100)
P PA, physical area
P 2 .
Friis transmission equation Fr = (ﬁ) Go,Go, 1P, - B,1° (2-118),
' T , (2-119)
Radar range equation ﬂ = a% A 1D, - P,|? (2-125)
P, 4z |4zR\R, v ’

(2-126)
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TABLE 2.3 (continued)

Equation
Parameter Formula Number
: 2 . Ws . |ES|2
Radar cross section (RCS) (m*) o= lim [47R*=%| = lim |47R*—
R—o0 Wl. R—o0 |E |2
(2-120a)
= lim |4zR? E
R—0 |H’ |2
Brightness temperature 75(0, ¢) (K) T30, ¢) = (0, )T, = (1 — |T'|)T,, (2-144)
2z T
/ / T,(0, p)G(O, P)sinbdo dep
Antenna temperature 7, (K) T, == r— (2-145)
/ / G(0,¢)sinbdo d¢
(3 0
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PROBLEMS

2.1.

2.2
2.3.

24.

2.5.

2.6.

2.7.

An antenna has a beam solid angle that is equivalent to a trapezoidal patch (patch with 4
sides, 2 of which are parallel to each other) on the surface of a sphere of radius . The angular
space of the patch on the surface of the sphere extends between 7 /6 < 6 < 7 /3(30° <0 <
60°) in latitude and 7 /4 < ¢p < 7/3(45° < ¢ < 60°) in longitude. Find the following:
(a) Equivalent beam solid angle [which is equal to number of square radians/steradians or

(degrees)2 ] of the patch [in square radians/steradians and in (degrees)z].

¢ Exact.

* Approximate using Q, = A® - A® = (6, — 0,) - (¢, — ¢). Compare with the exact.
(b) Corresponding antenna maximum directivities of part a (dimensionless and in dB).

Derive (2-7) given the definitions of (2-5) and (2-6)

A hypothetical isotropic antenna is radiating in free-space. At a distance of 100 m from the
antenna, the total electric field (E,) is measured to be 5 V/m. Find the

(a) power density (W,, ) (b) power radiated (P,4)

Find the half-power beamwidth (HPBW) and first-null beamwidth (FNBW), in radians and
degrees, for the following normalized radiation intensities:

(a) U(@) =cos O (b) U(B) = cos? 0
(c) U(O) = cos(20) (d) U(0) = cos?(20) ¢ (0 <6 <90°,0 < ¢ <360°)
(e) U() = cos(30) (f) U(0) = cos2(30)

Find the half-power beamwidth (HPBW) and first-null beamwidth (FNBW), in radians and
degrees, for the following normalized radiation intensities:
(a) U(B) = cos 6 cos(260)
(b) U(0) = cos? 6 cos2(26)
(c) U(B) = cos(0) cos(30)
(d) U(B) = cos?(0) cos?(36)
(e) U(B) = cos(260) cos(30)
(f) U(0) = cos?(20) cos?(36)

(0 <6 <90°0 < ¢ <360°)

The maximum radiation intensity of a 90% efficiency antenna is 200 mW/unit solid angle.
Find the directivity and gain (dimensionless and in dB) when the

(a) input power is 125.66 mW
(b) radiated power is 125.66 mW

The power radiated by a lossless antenna is 10 watts. The directional characteristics of the
antenna are represented by the radiation intensity of

(a) U= B,cos’ 0 (watts/unit solid angle)

(b) U =B, cos* 8 0<0<7/2,0<¢<2n)

For each, find the

(a) maximum power density (in watts/square meter) at a distance of 1,000 m (assume far-
field distance). Specify the angle where this occurs.

(b) exact and approximate beam solid angle €.
(c) directivity, exact and approximate, of the antenna (dimensionless and in dB).
(d) gain, exact and approximate, of the antenna (dimensionless and in dB).
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2.8.

2.9.

2.10.
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The approximate far zone normalized electric field radiated by a resonant linear dipole
antenna used in wireless mobile units, positioned symmetrically at the origin along the z-
axis, is given by

A .15 ne Ik 0° <6 <180°
E, ~ayE,sin"~ 0 p 0° < 6 < 360°

where E, is a constant and r is the spherical radial distance measured from the origin of the
coordinate system. Determine the:

(a) Exact maximum directivity (dimensionless and in dB).

(b) Half-power beamwidth (in degrees)

(c) Approximate maximum directivity (dimensionless and in dB). Indicate which approxi-
mate formula you are using and why?

(d) Approximate maximum directivity (dimensionless and in dB) using another approximate
formula. Indicate which other formula you are using and why?

(e) Maximum directivity (dimensionless and in dB) using the computer program
Directivity.

You are an antenna engineer and you are asked to design a high directivity/gain antenna for a
space-borne communication system operating at 10 GHz. The specifications of the antenna
are such that its pattern consists basically of one major lobe and, for simplicity, no minor
lobes (if there are any minor lobes they are of such very low intensity and you can assume
they are negligible/zero). Also it is desired that the pattern is symmetrical in the azimuthal
plane. In order to meet the desired objectives, the main lobe of the pattern should have a
half-power beamwidth of 10 degrees. In order to expedite the design, it is assumed that the
major lobe of the normalized radiation intensity of the antenna is approximated by

U@, ¢) = cos™(0)

and it exists only in the upper hemisphere (0 < 6 < /2,0 < ¢ < 2x). Determine the:

(a) Value of n (not necessarily an integer) to meet the specifications of the major lobe. Keep
5 significant figures in your calculations.

(b) Exact maximum directivity of the antenna (dimensionless and in dB).

(c) Approximate maximum directivity of the antenna based on Kraus’ formula (dimension-
less and in dB).

(d) Approximate maximum directivity of the antenna based on Tai & Pereira’s formula
(dimensionless and in dB).

In target-search ground-mapping radars it is desirable to have echo power received from a
target, of constant cross section, to be independent of its range. For one such application,
the desirable radiation intensity of the antenna is given by

1 0° < 6 <20°
U@, ) = { 0.342csc(d)  20° < 6 < 60° } 0° < ¢ < 360°
0 60° < 0 < 180°

Find the directivity (in dB) using the exact formula.
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2.12.

2.13.

2.14.

2.15.

2.16.
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A beam antenna has half-power beamwidths of 30° and 35° in perpendicular planes inter-
secting at the maximum of the mainbeam. Find its approximate maximum effective aperture
(in A%) using:

(a) Kraus’

(b) Tai and Pereira’s formulas.

The minor lobes are very small and can be neglected.

The normalized radiation intensity of a given antenna is given by

(a) U =sinfsing (b) U =sin@sin’ ¢
(c) U =sinfsin’ ¢ (d) U =sin’0sin¢
(e) U = sin?6@sin® ¢ (f) U = sin®@sin’ ¢

The intensity exists only in the 0 <0 < 7,0 < ¢ < x region, and it is zero elsewhere.
Find the

(a) exact directivity (dimensionless and in dB).
(b) azimuthal and elevation plane half-power beamwidths (in degrees).

The normalized radiation intensity radiated by an antenna is given by

sinfcos2¢ 0° <6 <180°
U@, ¢) = 90° < 0 <270°
0 Elsewhere

The maximum of the radiation intensity occurs towards 8 = 90° and ¢ = 180°. Find the:

(a) Exact maximum directivity (dimensionless and in dB).

(b) Half-power beamwidth (in degrees) in the principal azimuth (horizontal) plane.

(c) Half-power beamwidth (in degrees) in the principal elevation (vertical) plane.

(d) Maximum directivity (dimensionless and in dB) using an appropriate approximate
method that you know. Indicate which one you are using.

Find the directivity (dimensionless and in dB) for the antenna of Problem 2.12 using

(a) Kraus’ approximate formula (2-26)

(b) Tai and Pereira’s approximate formula (2-30a)

For Problem 2.10, determine the approximate directivity (in dB) using
(a) Kraus’ formula (b) Tai and Pereira’s formula.

The normalized radiation intensity of an antenna is rotationally symmetric in ¢, and it is
represented by

1 0° <0 <30°
0.5 30°<6<60°
0.1 60° <6 <90°
0 90°<60<180°

U=

(a) What is the directivity (above isotropic) of the antenna (in dB)?
(b) What is the directivity (above an infinitesimal dipole) of the antenna (in dB)?
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The radiation intensity of an antenna is given by
U(0, ¢) = cos* 0 sin’ ¢

for0 <0 <z/2and 0 < ¢ <27 (i.e., in the upper half-space). It is zero in the lower half-
space.
Find the

(a) exact directivity (dimensionless and in dB)
(b) elevation plane half-power beamwidth (in degrees)

The normalized radiation intensity of an antenna is symmetric, and it can be approxi-
mated by

1 0° <6 <30°

cos(0)
U = ° < °
0) 0.866 30° <0 <90

0 90° <6 < 180°

and it is independent of ¢. Find the
(a) exact directivity by integrating the function
(b) approximate directivity using Kraus’ formula

The maximum gain of a horn antenna is +20 dB, while the gain of its first sidelobe is —15 dB.
What is the difference in gain between the maximum and first sidelobe:

(a) indB (b) as a ratio of the field intensities.

The normalized radiation intensity of an antenna is approximated by
U =sin6

where 0 < 0 < 7, and 0 < ¢ < 2z. Determine the directivity using the
(a) exact formula

(b) formulas of (2-33a) by McDonald and (2-33b) by Pozar

(c) computer program Directivity of this chapter.

Repeat Problem 2.20 for a A/2 dipole whose normalized intensity is approximated by
U ~sin® 6

Compare the value with that of (4-91) or 1.643 (2.156 dB).

The radiation intensity of a circular loop of radius a and of constant current is given by
U=Ji(kasing), 0<0<rz and 0<¢<2r

where J;(x) is the Bessel function of order 1. For a loop with radii of a = A/10 and A/20,
determine the directivity using the:

(a) formulas (2-33a) by McDonald and (2-33b) by Pozar.
(b) computer program Directivity of this chapter.
Compare the answers with that of a very small loop represented by 1.5 or 1.76 dB.
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Find the directivity (dimensionless and in dB) for the antenna of Problem 2.12 using numer-
ical techniques with 10° uniform divisions and with the field evaluated at the

(a) midpoint (b) trailing edge of each division.

Compute the directivity values of Problem 2.12 using the computer program Directivity of
this chapter.

The far-zone electric-field intensity (array factor) of an end-fire two-element array antenna,
placed along the z-axis and radiating into free-space, is given by

—jkr
E=cos[%(cos9—1)]e R 0<0<n~x
r
Find the directivity using
(a) Kraus’ approximate formula
(b) the computer program Directivity of this chapter.
Repeat Problem 2.25 when
—jkr
E=cos[%(c059+1)] e—, 0<0<n~x
r

The radiation intensity is represented by

Upsin(zsinf), 0<0<z/2and0< ¢ <2z
U= { 0 elsewhere
Find the directivity
(a) exactly
(b) using the computer program Directivity of this chapter.
The approximate far-zone electric field radiated by a very thin wire circular loop of radius a,
positioned symmetrically about the z-axis and with its area parallel to the xy-plane, is given
by
jkr

where C) is a constant. Determine the:
(a) Exact directivity (dimensionless and in dB).

(b) Approximate directivity (dimensionless and in dB) using an approximate but appropriate
formula (state the formula you are using).

The radiation intensity of an aperture antenna, mounted on an infinite ground plane with
z perpendicular to the aperture, is rotationally symmetric (not a function of ¢), and it is
given by

[sin(;r sin 0)] 2
U= |———
7 sin 0

Find the approximate directivity (dimensionless and in dB) using
(a) numerical integration. Use the Directivity computer program of this chapter.
(b) Kraus’ formula (c) Tai and Pereira’s formula.
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The normalized far-zone field pattern of an antenna is given by

(sinfcos’)'/? 0<O<zand0<¢p<7/2,37/2<¢p<2x

E =
0 elsewhere

Find the directivity using

(a) the exact expression (b) Kraus’ approximate formula
(c) Tai and Pereira’s approximate formula

(d) the computer program Directivity of this chapter

The normalized field pattern of the main beam of a conical horn antenna, mounted on an
infinite ground plane with z perpendicular to the aperture, is given by

J(kasin @)
sin

where a is its radius at the aperture. Assuming that a = A, find the
(a) half-power beamwidth
(b) directivity using Kraus’ approximate formula

A base station cellular communication systems lossless antenna has a maximum gain of
16 dB (above isotropic) at 1,900 MHz. Assuming the input power to the antenna is 8 watts,
what is the maximum radiated power density (in watts/cm?) at a distance of 100 meters?
This will determine the safe level for human exposure to electromagnetic radiation.

A uniform plane wave, of a form similar to (2-55), is traveling in the positive z-direction.
Find the polarization (linear, circular, or elliptical), sense of rotation (CW or CCW), axial
ratio (AR), and tilt angle 7 (in degrees) when

@ E,=E,Ap =g, — =0 (D) E, #E, Ap = ¢, — b, = 0

© E, =E.Adp =, — ¢, = 7/2 () E, = E,. Ap = ¢y — , = /2
© E, = E.Adp =y — ¢, = n/4 (DE, =E.Ap =y, = —n/4
(2) Ex=0.5Ey,Ad)=¢y—¢x =7x/2 (h) E, =0.5E ,A¢=¢y—¢x= —r/2

In all cases, justify the answer.
Derive (2-66), (2-67), and (2-68).

Write a general expression for the polarization loss factor (PLF) of two linearly polarized
antennas if
(a) both lie in the same plane (b) both do not lie in the same plane

A linearly polarized wave traveling in the positive z-direction is incident upon a circularly
polarized antenna. Find the polarization loss factor PLF (dimensionless and in dB) when
the antenna is (based upon its transmission mode operation)

(a) right-handed (CW) (b) left-handed (CCW)

A 300 MHz uniform plane wave, traveling along the x-axis in the negative x-direction, whose
electric field is given by

E, = E,(ja, + 34 )e" ™
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where E is a real constant, impinges upon a dipole antenna that is placed at the origin and
whose electric field radiated toward the x-axis in the positive x-direction is given by

E, = E, 4, +2a)e7™

where E, is a real constant. Determine the following:

(a) Polarization of the incident wave (including axial ratio and sense of rotation, if any).
You must justify (state why?).

(b) Polarization of the antenna (including axial ratio and sense of rotation, if any). You must
justify (state why?).

(c) Polarization loss factor (dimensionless and in dB).

I8

Incident Wave

P Antenna
_________ > I

y

The electric field of a uniform plane wave traveling along the negative z-direction is given by
. L "
E, = (&, +ja)Eje™™

and is incident upon a receiving antenna placed at the origin and whose radiated electric
field, toward the incident wave, is given by

e—jkr

E,=(a,+2a)E, p

where E, and E| are constants.
Determine the following:

(a) Polarization of the incident wave, and why?
(b) Sense of rotation of the incident wave.

(c) Polarization of the antenna, and why?

(d) Sense of rotation of the antenna polarization.

(e) Losses (dimensionless and in dB) due to polarization mismatch between the incident
wave and the antenna.

A spherical wave travelling in free-space along the negative y-axis, and whose electric field
is given by
A L A etk
E, = (44, +]2ax)EWT

where E,, is a constant, impinges upon a A/2 dipole antennas positioned at the origin of the
coordinate system whose normalized electric field antenna radiation characteristics along
the y-direction are given by
E N E e_jky
=a _—
a zZa y

where E is a constant.
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Z

A/2 dipole

— E

X

Assuming for this problem the receiving / = A/2 dipole is lossless and it is perfectly-
matched to the connecting transmission line, determine the:

(a) Polarization of the impinging wave (linear, circular or elliptical). Why?

(b) Sense of rotation (CW or CCW), if any, of the impinging wave. Why?

(c) Axial Ratio (AR) of the impinging wave. Why?

(d) Polarization Loss Factor (PLF) between the impinging wave and the receiving /2
dipole antenna (dimensionless and in dB).

A ground-based helical antenna is placed at the origin of a coordinate system and it is used
as a receiving antenna. The normalized far-zone electric-field pattern of the helical antenna
in the transmitting mode is represented in the direction 6, ¢, by

R A e—jkr
E, = Eg(jag +284) /05, o) ——

The far-zone electric field transmitted by an antenna on a flying aircraft towards 6,, ¢,
which is received by the ground-based helical antenna, is represented by

. . e+jkr
EW = E1(230 +Ja¢)f](ag’ d)a) r

Determine the following:

(a) Polarization (linear, circular, or elliptical) of the helical antenna in the transmitting
mode. State also the sense of rotation, if any.

(b) Polarization (linear, circular, or elliptical) of the incoming wave that impinges upon the
helical antenna. State also the sense of rotation, if any.

(c) Polarization loss (dimensionless and in dB) due to match/mismatch of the polarizations
of the antenna and incoming wave.

A circularly polarized wave, traveling in the positive z-direction, is incident upon a circularly
polarized antenna. Find the polarization loss factor PLF (dimensionless and in dB) for right-
hand (CW) and left-hand (CCW) wave and antenna.

The electric field radiated by a rectangular aperture, mounted on an infinite ground plane
with z perpendicular to the aperture, is given by

E =[4)cos ¢ —aysingcos011(r, 0, )

where f(r, 0, ¢) is a scalar function which describes the field variation of the antenna.
Assuming that the receiving antenna is linearly polarized along the x-axis, find the polar-
ization loss factor (PLF).
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A circularly polarized wave, traveling in the positive z-direction, is received by an ellipti-
cally polarized antenna whose reception characteristics near the main lobe are given approx-
imately by

E, ~[24, +ja]f(r,0,¢)

Find the polarization loss factor PLF (dimensionless and in dB) when the incident wave is
(a) right-hand (CW) (b) left-hand (CCW)
circularly polarized. Repeat the problem when

Ea = [Zéix _jﬁy]f(r’ 07 d))

In each case, what is the polarization of the antenna? How does it match with that of
the wave?

A linearly polarized wave traveling in the negative z-direction has a tilt angle (7) of 45°. It
is incident upon an antenna whose polarization characteristics are given by

o 4a 47
Py= ————
VT

Find the polarization loss factor PLF (dimensionless and in dB).

An elliptically polarized wave traveling in the negative z-direction is received by a circularly
polarized antenna whose main lobe is along the 8 = 0 direction. The unit vector describing
the polarization of the incident wave is given by

A 2a, +ja,
Py=—"T7""
V5
Find the polarization loss factor PLF (dimensionless and in dB) when the wave that would

be transmitted by the antenna is
(a) right-hand CP (b) left-hand CP

A CW circularly polarized uniform plane wave is traveling in the positive z-direction. Find
the polarization loss factor PLF (dimensionless and in dB) assuming the receiving antenna
(in its transmitting mode) is

(a) CW circularly polarized (b) CCW circularly polarized

The polarization of the field radiated by a helical antenna which is placed at the origin of a
spherical coordinate system, which is used as a receiving antenna, is given by

e—jkr

E, = (2 + j4i)E,—

where E, is a constant. The polarization of an incoming wave, which is received by the
helical antenna, is given by

e+jkr
EW = (]4ﬁ0 + 2ﬁ¢)EW_
r
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where E,, is a constant. Determine the:

(a) Polarization of the helical antenna (linear, circular, elliptical).

(b) The sense of rotation of the polarization of the helical antenna (CW or CCW).
(c) Axial Ratio of the polarization of the helical antenna (AR).

(d) Polarization of the incoming wave (linear, circular, elliptical).

(e) The sense of rotation of the incoming wave (CW or CCW).

(f) Axial Ratio of the incoming wave (AR).

(g) Polarization Loss factor (PLF) between the polarization of the helical antenna and that
of the incoming wave (dimensionless and in dB).

A linearly polarized uniform plane wave traveling in the positive z-direction, with a power

density of 10 milliwatts per square meter, is incident upon a CW circularly polarized antenna

whose gain is 10 dB at 10 GHz. Find the

(a) maximum effective area of the antenna (in square meters)

(b) power (in watts) that will be delivered to a load attached directly to the terminals of
the antenna.

A wave, whose electric field is given by

+jky
E ~aFE %

w zEw
y

where E,, is a constant, is traveling along the -y axis and impinges upon the maximum inten-
sity direction of the A/2 dipole, whose maximum electric field is given by

—jkr —jky
A .15 5€ A e
E, |max = 8pE,sin ° 0—| .. =-4E,—
r 19=90°,r=y y
ag=—4,

where E, is a constant. Assuming the incoming wave has, at a frequency of 10 GHz, a power
density of 100 mwatts/cm?, determine at 10 GHz the:

(a) Polarization Loss Factor (PLF) (dimensionless and in dB)

(b) Maximum power (in watts) that can be delivered to a load connected to the A/2 receiving
antenna whose input impedance is

Z, =73 +j42.5

Its total loss resistance is 5 ohms and the antenna is connected to a transmission line
with characteristic impedance of 50 ohms.

A linearly polarized plane wave traveling along the negative z-axis is incident upon an ellip-
tically polarized antenna (either CW or CCW). The axial ratio of the antenna polarization
ellipse is 2:1 and its major axis coincides with the principal x-axis. Find the polarization
loss factor (PLF) assuming the incident wave is linearly polarized in the

(a) x-direction (b) y-direction

A wave traveling normally outward from the page (toward the reader) is the resultant of two
elliptically polarized waves, one with components of E given by:

r_ . r_ z
%y =3 coswt; ng =T7cos <a)t+ 2)
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and the other with components given by:

" _ . " _ z
%y = 2 coswt; %x —3cos<wt—§>

(a) What is the axial ratio of the resultant wave?
(b) Does the resultant vector E rotate clockwise or counterclockwise?

A linearly polarized antenna lying in the x-y plane is used to determine the polarization axial
ratio of incoming plane waves traveling in the negative z-direction. The polarization of the
antenna is described by the unit vector

P, =4a,cosy +a,siny

1 1
09 1
0.8 1
0.7 1
0.6 - —
0.5
04 —
03 1
02 —
0.1 —

0

PLF
PLF

| | | | | | | | | | | | | |
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
v (deg) v (deg)

(a) PLF versus y (b) PLF versus y

1
0.9
0.8
0.7
0.6
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0.4
0.3
0.2
0.1

PLF

| | | | |
00 50 100 150 200 250 300 350

v (deg)

(c) PLF versus y

where y is an angle describing the orientation in the x-y plane of the receiving antenna.
Above are the polarization loss factor (PLF) versus receiving antenna orientation curves
obtained for three different incident plane waves. For each curve determine the axial ratio
of the incident plane wave.

A L/2 dipole, with a total loss resistance of 1 ohm, is connected to a generator whose internal
impedance is 50 4+ j25 ohms. Assuming that the peak voltage of the generator is 2 V and the
impedance of the dipole, excluding the loss resistance, is 73 + j42.5 ohms, find the power
(a) supplied by the source (real) (b) radiated by the antenna

(c) dissipated by the antenna
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The antenna and generator of Problem 2.53 are connected via a 50-ohm A/2-long lossless
transmission line. Find the power
(a) supplied by the source (real) (b) radiated by the antenna

(c) dissipated by the antenna

An antenna with a radiation resistance of 48 ohms, a loss resistance of 2 ohms, and a reac-
tance of 50 ohms is connected to a generator with open-circuit voltage of 10 V and internal
impedance of 50 ohms via a A/4-long transmission line with characteristic impedance of
100 ohms.

(a) Draw the equivalent circuit

(b) Determine the power supplied by the generator

(c) Determine the power radiated by the antenna

A transmitter, with an internal impedance Z, (real), is connected to an antenna through a

lossless transmission line of length / and characteristic impedance Z,. Find a simple expres-
sion for the ratio between the antenna gain and its realized gain.

Z, l >
- —
12 | z, | Zin V() = A [¢75 + ()]
} } | 1) = zA [~ T(0)e %]
Transmitter | Transmission line | Antenna 0
[

|
x=0 —>»x

V, = strength of voltage source

Z;, = R;, +jX;, = input impedance of the antenna

Zy = R = characteristic impedance of the line

P = power accepted by the antenna { P, .epeq = Re[V(0)I*(0)]}
Pyyailable = power delivered to a matched load [i.e., Z;, = Z; = Z;]

accepted

The input reactance of an infinitesimal linear dipole of length A/60 and radius a = /200
is given by

[In(l/2a) — 1]
i = —120 tan(kl/2)

Assuming the wire of the dipole is copper with a conductivity of 5.7 x 107S/m, determine
atf = 1 GHz the

(a) loss resistance (b) radiation resistance (c) radiation efficiency
(d) VSWR when the antenna is connected to a 50-ohm line

A dipole antenna consists of a circular wire of length /. Assuming the current distribution
on the wire is cosinusoidal, i.e.,

1.(z) = I cos (%z') -1/2<7<1)2

where /) is a constant, derive an expression for the loss resistance R;, which is one-half of
(2-90b).
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2.59. The E-field pattern of an antenna, independent of ¢, varies as follows:

E= 45° < 0 <90°

{1 0° <0 <45°
90° < 6 < 180°

(ST Y]

(a) What is the directivity of this antenna?

(b) What is the radiation resistance of the antenna at 200 m from it if the electric field is
equal to 10 V/m (rms) for & = 0° at that distance and the terminal current is 5 A (rms)?

2.60. The approximate far-zone normalized electric field radiated by a ground-based end-fire heli-
cal antenna used in communication systems for space-borne applications, positioned sym-
metrically at the origin along the z-axis, is given by

A 3 e 0<60<90°
E ~ ayE,cos’ 0 T 0< ¢ < 360°

a
0 Elshewhere

where E, is a constant and r is the spherical radial distance measured from the origin of the
coordinate system.
Determine the:

(a) Half power beamwidth (HPBW) (in degrees)
(b) Exact maximum directivity (dimensionless and in dB).

(c) Approximate maximum directivity (dimensionless and in dB) using the most accurate
approximate formula for this problem.
Indicate which most accurate approximate formula you are using and why?

(d) Maximum directivity (dimensionless and in dB) using the computer program Directivity.
(e) Maximum effective area (A,,,)(in W2), based on the exact directivity.

2.61. The far-zone field radiated by a rectangular aperture mounted on a ground plane, with
dimensions a and b and uniform aperture distribution, is given by (see Table 12.1)

E9=Csin¢SI;XSH;Y X=k?asinecos¢; 0<6<90°
sinX sinY

E4 = Ccosfcos¢ Y=%sinﬁsin¢; 0 < ¢ <360°

X Y

where C is a constant. For an aperture with a = 3\, b = 2, determine the
(a) maximum partial directivities Dy, D, (dimensionless and in dB) and

(b) total maximum directivity D, (dimensionless and in dB). Compare with that computed
using the equation in Table 12.1.

Use the computer program Directivity of this chapter.
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Repeat Problem 2.61 when the aperture distribution is that of the dominant TE, mode of a
rectangular waveguide, or from Table 12.1

ExayEy)+4a,E,

E9=—%Csin¢ cos X 2su)l]Y ;
(X)Z_(ﬁ) X=—asinﬂcosq§
2 2
Ey = —chosé)cosq’) cos X sin ¥ Y= kb sin @ sin ¢
2 z\2 Y 2
w2~ (3)

Repeat Problem 2.62 when the aperture dimensions are those of an X-band rectangular
waveguide with a = 2.286 cm (0.9 in.), b = 1.016 cm (0.4 in.) and frequency of operation
is 10 GHz.

Repeat Problem 2.61 for a circular aperture with a uniform distribution and whose far-zone
fields are, from Table 12.2

. D
Ey =jC;sing Z Z=kasin®; 0<6<90°

J1(2) 0< ¢ <360°
Z

E, =jCjcosfcos ¢

where C is a constant and J;(Z) is the Bessel function of the first kind. Assume a = 1.5A.
Repeat Problem 2.64 when the aperture distribution is that of the dominant TE;; mode of a
circular waveguide, or from Table 12.2

J1(2)

Ey = Cysing— Z = kasin0; 0<6<90°

D \ray=i2 0<¢<360°

2
(1)_<£,> _JI(Z)/Z;
11

where C, is a constant, J|(Z) is the derivative of J,(Z), x|, = 1.841 is the first zero of J{(2),
and J,(Z) is the Bessel function of the first find of order zero.

Ey = C,cosfcos ¢

Repeat 2.65 when the radius of the aperture is @ = 1.143 cm (0.45 in.) and the frequency of
operation is 10 GHz.

The normalized far-field total electric field radiated by an antenna, consisting of an infinites-
imal vertical dipole (oriented along the z-axis) plus a small circular loop (parallel to the
xy-plane), placed at the origin of a spherical coordinate system is given by:

—jkr
E, =@, +j2?1¢)sin0EOeT;(0° <0 <180°,0° < ¢ < 360°)
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Determine the:

(a) Polarization of the wave (linear, circular or elliptical). Justify it. If circular, state the
sense of rotation. If elliptical, state the sense of rotation and the axial ratio (AR).

(b) partial maximum directivities (D), and (Dy)4 (dimensionless and in dB).
(c) Total maximum directivity D, (dimensionless and in dB).
Hint: For this problem, there are two different and distinct partial directivities.

A
z

dipOIC \

loop

A 1-m long dipole antenna is driven by a 150 MHz source having a source resistance of
50 ohms and a voltage of 100 V. If the ohmic resistance of the antennas is given by R; =
0.625 ohms, find the:

(a) Current going into the antenna (Z,,,); (c) Power radiated by the antenna;

(b) Power dissipated by the antenna (d) Radiation efficiency of the antenna

The field radiated by an infinitesimal dipole of very small length (I < A/50), and of uniform
current distribution 7, is given by (4-26a) or

kIl .
E =4,E, ~ a,jn—>¢7* sin 0
oL0 91’747”

Determine the

(a) vector effective length

(b) maximum value of the vector effective length. Specify the angle.
(c) ratio of the maximum effective length to the physical length /.

The field radiated by a half-wavelength dipole (I = A/2), with a sinusoidal current distribu-
tion, is given by (4-84) or

where [, is the maximum current. Determine the

(a) vector effective length

(b) maximum value of the vector effective length. Specify the angle.
(c) ratio of the maximum effective length to the physical length /.

A uniform plane wave, of 10~ 3watts/cm?> power density, is incident upon an infinitesimal
dipole of length / = /50 and uniform current distribution, as shown in Figure 2.29(a). For
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a frequency of 10 GHz, determine the maximum open-circuited voltage at the terminals of
the antenna. See Problem 2.69.

Repeat Problem 2.71 for a small dipole with triangular current distribution and length
[ =A/10. See Example 2.14.

Repeat Problem 2.71 for a half-wavelength dipole (# = A/2) with sinusoidal current distri-
bution. See Problem 2.70.

Show that the effective length of a linear antenna can be written as

. AZ,?

nRy

which for a lossless antenna and maximum power transfer reduces to

A, and A, represent, respectively, the effective and maximum effective apertures of the
antenna while # is the intrinsic impedance of the medium.

An antenna has a maximum effective aperture of 2.147 m? at its operating frequency of
100 MHz. It has no conduction or dielectric losses. The input impedance of the antenna
itselfis 75 ohms, and it is connected to a 50-ohm transmission line. Find the directivity of the
antenna system (“‘system” meaning includes any effects of connection to the transmission
line). Assume no polarization losses.

A small circular parabolic reflector, often referred to as dish, is now being advertised as a TV

antenna for direct broadcast. Assuming the diameter of the antenna is 1 meter, the frequency

of operation is 3 GHz, and its aperture efficiency is 68%, determine the following:

(a) Physical area of the reflector (in m? ).

(b) Maximum effective area of the antenna (in m? ).

(c) Maximum directivity (dimensionless and in dB).

(d) Maximum power (in watts) that can be delivered to the TV if the power density of the
wave incident upon the antennais /0 ywatts/ m?. Assume no losses between the incident
wave and the receiver (TV).

A uniform plane wave, with a power density of 10 mwatts/cm?, is impinging upon a half

wavelength dipole at an angle normal/perpendicular to the axis of the dipole. Determine the:

(a) Maximum effective area (in \*) of the lossless dipole element. Assume the dipole has a
directivity of 2.148 dB, it is polarized matched to the incident wave and it is mismatched,
with reflection coefficieitn of 0.2. to the transmission line it is connected.

(b) Physical area (in \*). Assume the physical area of the dipole is equal to its lengthwise
cross sectional area; the dipole diameter is M300.

(c) Aperture efficiency (in %).

(d) Maximum power the dipole will interecept and deliver to a load. Assume a frequency of
operation of / GHz.

An incoming wave, with a uniform power density equal to 103 W/m? is incident normally
upon a lossless horn antenna whose directivity is 20 dB. At a frequency of 10 GHz, deter-
mine the very maximum possible power that can be expected to be delivered to a receiver
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or a load connected to the horn antenna. There are no losses between the antenna and the
receiver or load.

You are a communication/antenna engineer and you are asked to determine whether the sig-
nal received by a space borne communication system operating at 10 GHz will be of suffi-
cient strength to be detected by the receiver. The power density incident upon the receiving
antenna of the space borne system is 10 x 10~3 Watts/cm?. The polarization of the inci-
dent wave is right-hand circularly polarized while that of the receiving antenna is linearly
polarized. The maximum directivity of the receiving space borne antenna is 12 dB, its input
impednace is 100 ohms, and its radiation efficiency is 75%. The characteristic impednace
of the transmission line from the receiving space borne antenna to the space borne receiver
has a characteistic impedance of 50 ohms. Determine the:

(a) maximum effective area (in cm?) of the antenna assuming no losses.
(b) maximum effective area (in cm?) of the antenna taking into account all the stated losses.
Identify each of the losses in %.

(¢) Maximum power (in Watts) delivered to the receiver faking into account all of the stated
losses.

A linearly polarized aperture antenna, with a uniform field distribution over its area, is used
as a receiving antenna. The antenna physical area over its aperture is 10 cm?, and it is oper-
ating at 10 GHz. The antenna is illuminated with a circularly polarized plane wave whose
incident power density is 10 mwatts/cm”. Assuming the antenna element itself is lossless,
determine its

(a) gain (dimensionless and in dB).

(b) maximum power (in watts) that can be delivered to a load connected to the antenna.
Assume no other losses between the antenna and the load.

A uniform plane wave traveling along the negative z-axis, and whose normalized electric
field is given by

— (iA a \pHkz
E =(a,+2a)e

it impinges upon an antenna whose polarization along the z-axis is represented by the nor-
malized electric field of

_ A —jkz
Ea _.]aye

The power density of the wave which impinges upon the antenna is 10 mwatts/\>. The

antenna has a maximum derectivity of 2.15 dB along the z-direction.

Determine the:

(a) Polarization of the impinging/incident wave, including it Axial Ratio and sense of rota-
tion, if any.

(b) Polarization of the antenna, including its Axial Ratio and sense of rotatio, if
any.

(c) Very maximum efective area (in \*) of the antenna assuming it has no losses of
any kind.

(d) Maximum effective area (in \*) assuming the antenna is losseless, but it possesses a
reflection coefficeint of 0.5 to the transmission line to which it is connected. Include
any other losses that should be accounted for.



122 FUNDAMENTAL PARAMETERS AND FIGURES-OF-MERIT OF ANTENNAS

(e) Maximum power the antenna will intercept and deliver to a load/receiver connected to its
trasmission line, taking into account all the losses associated with this problem. Assume
a frequency of operation of 1 GHz.

Impinging

Antenna wave

2.82. The far-zone power density radiated by a helical antenna can be approximated by

The radiated power density is symmetrical with respect to ¢, and it exists only in the upper
hemisphere (0 <0 < /2,0 < ¢ < 2x); C, is a constant.

Determine the following:

(a) Power radiated by the antenna (in watts).

(b) Maximum directivity of the antenna (dimensionless and in dB)

(c) Direction (in degrees) along which the maximum directivity occurs.

(d) Maximum effective area (in m?) at | GHz.

(e) Maximum power (in watts) received by the antenna, assuming no losses, at | GHz when
the antenna is used as a receiver and the incident power density is 10 mwatts/m?.

2.83. The antenna used at a base station is a A/2 dipole which has a maximum directivity of 2.286
dB. The power radiated by the A/2 dipole is 10 watts. Assume an operating frequency of
1,900 MHz:
(a) Determine the maximum power density (in watts/cm®) radiated by the A/2 dipole at a
distance of 1,000 meters.

(b) Assuming the receving antenna used in a mobile unit, such as an automobile, is a A/4
monopole, with a maximum directivity of 5.286 dB, determine the maximum effective
area (in cm?) of the monopole antenna.

(c) If the receiving mobile unit, the automobile, is at a distance of 1,000 meters from the
base station, what is the maximum power (in watts) that can be received by the antenna
(M4 monopole), which is mounted on the top of the automobile, and delivered to a
matched load/receiver. Assume the antennas are polarization matched, and that there
are no losses of any kind in both antennas, including no matching/reflection losses.

2.84. For an X-band (8.2—12.4 GHz) rectangular horn, with aperture dimensions of 5.5 cm and
7.4 cm, find its maximum effective aperture (in cm?®) when its gain (over isotropic) is
(a) 14.8 dB at 8.2 GHz (b) 16.5dB at 10.3 GHz (c) 18.0dB at 12.4 GHz

2.85. A base station is installed near your neighborhood. One of the concerns of the residents liv-
ing nearby is the exposure to electromagnetic radiation. The input power inside the transmis-
sion line feeding the base station antenna is 100 Watts while the omnidirectional radiation
amplitude pattern of the base station antenna can be approximated by

U@,¢) = B,sin(0) 0<6<180°0< ¢ < 360°
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where B, is a constant. The characteristic impedance of the transmission line feeding the
base station antenna is 75 ohms while the input impedance of the base station antenna is 100
ohms. The radiation (conduction/dielectric) efficiency of the base station antenna is 50%.
Determine the:

(a) Reflection/mismatch efficiency of the antenna (in %)

(b) Total efficiency (in %) of the antenna

(c) Value of B,. Must do the integration in closed form and show the details.
(d) Maximum exact directivity (dimensionless and in dB)

(e) Maximum power density (in Watts/cm?) at a distance of 1,000 meters. This may repre-
sent the distance from the base station to your house.

For Problem 2.61 compute the

(a) maximum effective area (in A%) using the computer program Directivity of this chapter.
Compare with that computed using the equation in Table 12.1.

(b) aperture efficiencies of part (a). Are they smaller or larger than unity and why?
Repeat Problem 2.86 for Problem 2.62.

Repeat Problem 2.86 for Problem 2.63.

Repeat Problem 2.86 for Problem 2.64. Compare with those in Table 12.2.

Repeat Problem 2.86 for Problem 2.65. Compare with those in Table 12.2.

Repeat Problem 2.86 for Problem 2.66. Compare with those in Table 12.2.

A 30-dB, right-circularly polarized antenna in a radio link radiates (in the negative z-
direction) 5 W of power at 2 GHz. The receiving antenna has an impedance mismatch
at its terminals, which leads to a VSWR of 2. The receiving antenna is about 95% effi-
cient and has a field pattern near the beam maximum (in the positive z-direction) given
by E, = (24, +ja )F (0, ¢). The distance between the two antennas is 4,000 km, and the
receiving antenna is required to deliver 1074 W to the receiver. Determine the maximum
effective aperture of the receiving antenna.

The radiation intensity of an antenna can be approximated by

cos*(@) 0° <6 <90°
U, ¢) = { with 0° < ¢ < 360°
0 90° < 6 < 180°

Determine the maximum effective aperture (in m?) of the antenna if its frequency of oper-
ation is f = 10 GHz.

A communication satellite is in stationary (synchronous) orbit about the earth (assume
altitude of 22,300 statute miles). Its transmitter generates 8.0 W. Assume the transmit-
ting antenna is isotropic. Its signal is received by the 210-ft diameter tracking paraboloidal
antenna on the earth at the NASA tracking station at Goldstone, California. Also assume no
resistive losses in either antenna, perfect polarization match, and perfect impedance match
at both antennas. At a frequency of 2 GHz, determine the:

(a) power density (in watts/m?) incident on the receiving antenna.
(b) power received by the ground-based antenna whose gain is 60 dB.

A lossless (e.; = 1) antenna is operating at 100 MHz and its maximum effective aperture
is 0.7162 m? at this frequency. The input impedance of this antenna is 75 ohms, and it is
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attached to a 50-ohm transmission line. Find the directivity (dimensionless) of this antenna
if it is polarization-matched.

A resonant, lossless (e.; = 1.0) half-wavelength dipole antenna, having a directivity of
2.156 dB, has an input impedance of 73 ohms and is connected to a lossless, 50 ohms
transmission line. A wave, having the same polarization as the antenna, is incident upon
the antenna with a power density of 5 W/m? at a frequency of 10 MHz. Find the received
power available at the end of the transmission line.

Two X-band (8.2—12.4 GHz) rectangular horns, with aperture dimensions of 5.5 cm and
7.4 cm and each with a gain of 16.3 dB (over isotropic) at 10 GHz, are used as transmitting
and receiving antennas. Assuming that the input power is 200 mW, the VSWR of each is
1.1, the conduction-dielectric efficiency is 100%, and the antennas are polarization-matched,
find the maximum received power when the horns are separated in air by

(@5m (b)50m (c)500m

Transmitting and receiving antennas operating at 1 GHz with gains (over isotropic) of 20
and 15 dB, respectively, are separated by a distance of 1 km. Find the maximum power
delivered to the load when the input power is 150 W. Assume that the

(a) antennas are polarization-matched

(b) transmitting antenna is circularly polarized (either right- or left-hand) and the receiving
antenna is linearly polarized.

Two lossless, polarization-matched antennas are aligned for maximum radiation between
them, and are separated by a distance of SOA. The antennas are matched to their transmission
lines and have directivities of 20 dB. Assuming that the power at the input terminals of the
transmitting antenna is 10 W, find the power at the terminals of the receiving antenna.

Repeat Problem 2.99 for two antennas with 30 dB directivities and separated by 100A. The
power at the input terminals is 20 W.

Transmitting and receiving antennas operating at 1 GHz with gains of 20 and 15 dB, respec-
tively, are separated by a distance of 1 km. Find the power delivered to the load when the
input power is 150 W. Assume the PLF = 1.

A series of microwave repeater links operating at 10 GHz are used to relay television sig-
nals into a valley that is surrounded by steep mountain ranges. Each repeater consists of
a receiver, transmitter, antennas, and associated equipment. The transmitting and receiving
antennas are identical horns, each having gain over isotropic of 15 dB. The repeaters are
separated in distance by 10 km. For acceptable signal-to-noise ratio, the power received at
each repeater must be greater than 10 nW. Loss due to polarization mismatch is not expected
to exceed 3 dB. Assume matched loads and free-space propagation conditions. Determine
the minimum transmitter power that should be used.

A one-way communication system, operating at 100 MHz, uses two identical A./2 vertical,
resonant, and lossless dipole antennas as transmitting and receiving elements separated by
10 km. In order for the signal to be detected by the receiver, the power level at the receiver
terminals must be at least 1 wW. Each antenna is connected to the transmitter and receiver
by a lossless 50-€2 transmission line. Assuming the antennas are polarization-matched and
are aligned so that the maximum intensity of one is directed toward the maximum radiation
intensity of the other, determine the minimum power that must be generated by the trans-
mitter so that the signal will be detected by the receiver. Account for the proper losses from
the transmitter to the receiver.
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In a long-range microwave communication system operating at 9 GHz, the transmitting and
receiving antennas are identical, and they are separated by 10,000 m. To meet the signal-to-
noise ratio of the receiver, the received power must be at least 10 pW. Assuming the two
antennas are aligned for maximum reception to each other, including being polarization-
matched, what should the gains (in dB) of the transmitting and receiving antennas be when
the input power to the transmitting antenna is 10 W?

A mobile wireless communication system operating at 2 GHz utilizes two antennas, one
at the base station and the other at the mobile unit, which are separated by /6 kilometers.
The transmitting antenna, at the base station, is circularly-polarized while the receiving
antenna, at the mobile station, is linearly polarized. The maximum gain of the transmitting
antenna is 20 dB while the gain of the receiving antennas is unknown. The input power to the
transmitting antenna is /00 watts and the power received at the receiver, which is connected
to the receiving antenna, is 5 nanowatts. Assuming that the two antennas are aligned so that
the maximum of one is directed toward the maximum of the other, and also assuming no
reflection/mismatch losses at the transmitter or the receiver, what is the maximum gain of
the receiving antenna (dimensions and in dB)?

A rectangular X-band horn, with aperture dimensions of 5.5 cm and 7.4 cm and a gain of
16.3 dB (over isotropic) at 10 GHz, is used to transmit and receive energy scattered from a
perfectly conducting sphere of radius @ = 5. Find the maximum scattered power delivered
to the load when the distance between the horn and the sphere is
(a) 2001 (b) 500A

Assume that the input power is 200 mW, and the radar cross section is equal to the geo-
metrical cross section.

A radar antenna, used for both transmitting and receiving, has a gain of 150 (dimensionless)
at its operating frequency of 5 GHz. It transmits 100 kW, and is aligned for maximum direc-
tional radiation and reception to a target 1 km away having a radar cross section of 3 m?.
The received signal matches the polarization of the transmitted signal. Find the received
power.

In an experiment to determine the radar cross section of a Tomahawk cruise missile, a 100 W,
10 GHz signal was transmitted toward the target, and the received power was measured to
be —160 dB. The same antenna, whose gain was 80 (dimensionless), was used for both
transmitting and receiving. The polarizations of both signals were identical (PLF = 1), and
the distance between the antenna and missile was 10* m. What is the radar cross section of
the cruise missile?

Repeat Problem 2.108 for a radar system with 100 W, 3 GHz transmitted signal, —160 dB
received signal, an antenna with a gain of 80 (dimensionless), and separation between the
antenna and target of 10* m.

The maximum radar cross section of a resonant linear A/2 dipole is approximately 0.86A%.
For a monostatic system (i.e., transmitter and receiver at the same location), find the received
power (in W) if the transmitted power is 100 W, the distance of the dipole from the trans-
mitting and receiving antennas is 100 m, the gain of the transmitting and receiving antennas
is 15 dB each, and the frequency of operation is 3 GHz. Assume a polarization loss factor
of —1 dB.

The effective antenna temperature of an antenna looking toward zenith is approximately
5 K. Assuming that the temperature of the transmission line (waveguide) is 72°F, find the
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effective temperature at the receiver terminals when the attenuation of the transmission line
is 4 dB/100 ft and its length is

(a)2ft (b) 100 ft

Compare it to a receiver noise temperature of about 54 K.

Derive (2-140). Begin with an expression that assumes that the physical temperature and
the attenuation of the transmission line are not constant.
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Radiation Integrals and Auxiliary
Potential Functions

3.1 INTRODUCTION

In the analysis of radiation problems, the usual procedure is to specify the sources and then require
the fields radiated by the sources. This is in contrast to the synthesis problem where the radiated
fields are specified, and we are required to determine the sources.

It is a very common practice in the analysis procedure to introduce auxiliary functions, known as
vector potentials, which will aid in the solution of the problems. The most common vector potential
functions are the A (magnetic vector potential) and F (electric vector potential). Another pair is the
Hertz potentials II, and II,,. Although the electric and magnetic field intensities (E and H) represent
physically measurable quantities, among most engineers the potentials are strictly mathematical
tools. The introduction of the potentials often simplifies the solution even though it may require
determination of additional functions. While it is possible to determine the E and H fields directly
from the source-current densities J and M, as shown in Figure 3.1, it is usually much simpler to find
the auxiliary potential functions first and then determine the E and H. This two-step procedure is
also shown in Figure 3.1.

The one-step procedure, through path 1, relates the E and H fields to J and M by integral relations.
The two-step procedure, through path 2, relates the A and F (or II, and II;)) potentials to J and M
by integral relations. The E and H are then determined simply by differentiating A and F (or II,
and II,,). Although the two-step procedure requires both integration and differentiation, where path
1 requires only integration, the integrands in the two-step procedure are much simpler.

The most difficult operation in the two-step procedure is the integration to determine A and F (or
I1, and I1,,). Once the vector potentials are known, then E and H can always be determined because
any well-behaved function, no matter how complex, can always be differentiated.

The integration required to determine the potential functions is restricted over the bounds of the
sources J and M. This will result in the A and F (or I, and II,,) to be functions of the observation
point coordinates; the differentiation to determine E and H must be done in terms of the observation
point coordinates. The integration in the one-step procedure also requires that its limits be determined
by the bounds of the sources.

The vector Hertz potential I1, is analogous to A and II,, is analogous to F. The functional relation
between them is a proportionality constant which is a function of the frequency and the constitu-
tive parameters of the medium. In the solution of a problem, only one set, A and F or II, and II,,

Antenna Theory: Analysis and Design, Fourth Edition. Constantine A. Balanis.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/antennatheory4e

127


http://www.wiley.com/go/antennatheory4e

128 RADIATION INTEGRALS AND AUXILIARY POTENTIAL FUNCTIONS

Integration
Sources path 1 Radiated fields
J.M E . H
Integration
path 2
Vector potentials
A F
or
I1,, IT,

Figure 3.1 Block diagram for computing fields radiated by electric and magnetic sources.

is required. The author prefers the use of A and F, which will be used throughout the book. The
derivation of the functional relations between A and I1,, and F and II;, are assigned at the end of the
chapter as problems. (Problems 3.1 and 3.2).

3.2 THE VECTOR POTENTIAL A FOR AN ELECTRIC CURRENT SOURCE J

The vector potential A is useful in solving for the EM field generated by a given harmonic electric
current J. The magnetic flux B is always solenoidal; that is, V - B = 0. Therefore, it can be repre-
sented as the curl of another vector because it obeys the vector identity

V.-VXA=0 (3-1)

where A is an arbitrary vector. Thus we define

B, = uH, =VxA (3-2)
or
1
H, = ;V XA (3-2a)

where subscript A indicates the field due to the A potential. Substituting (3-2a) into Maxwell’s
curl equation

VXE, = —jouH, (3-3)
reduces it to
VXE, = —jouH, = —joV X A (3-4)
which can also be written as

VX [E, +jwA] =0 (3-5)
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From the vector identity

V X (-V¢,) =0 (3-6)
and (3-5), it follows that
E, +joA =-V¢, (3-7)
or
E, =-V¢, - joA (3-7a)

The scalar function ¢, represents an arbitrary electric scalar potential which is a function of position.
Taking the curl of both sides of (3-2) and using the vector identity

VXVXA=V(V-A)-VA (3-8)
reduces it to
V x (uHy) = V(V-A) - VA (3-8a)

For a homogeneous medium, (3-8a) reduces to

UV xH, = V(V-A)- VA (3-9)
Equating Maxwell’s equation
VxH, =]+ jweE, (3-10)
to (3-9) leads to
uJ + joueE, = V(V - A) - V2A (3-11)

Substituting (3-7a) into (3-11) reduces it to

VZA +k°A = —pJ + V(V - A) + V(joued,)
. 3-12
=—uJ+V(V-A+joucp,) (3-12)
where k% = w? ue.
In (3-2), the curl of A was defined. Now we are at liberty to define the divergence of A, which is
independent of its curl. In order to simplify (3-12), let

1

VA= —jocup, = ¢, = —-
Jjoue

V-A (3-13)

which is known as the Lorentz condition. Substituting (3-13) into (3-12) leads to

VA + k%A = —uJ (3-14)
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In addition, (3-7a) reduces to

. . o1
E, = -V¢, — joA = —joA — j—V(V - A) (3-15)
wWUE

Once A is known, H, can be found from (3-2a) and E, from (3-15). E, can just as easily be
found from Maxwell’s equation (3-10) with J = 0. It will be shown later how to find A in terms of
the current density J. It will be a solution to the inhomogeneous Helmholtz equation of (3-14).

3.3 THE VECTOR POTENTIAL F FOR A MAGNETIC CURRENT SOURCE M

Although magnetic currents appear to be physically unrealizable, equivalent magnetic currents arise
when we use the volume or the surface equivalence theorems. The fields generated by a harmonic
magnetic current in a homogeneous region, with J = 0 but M # 0, must satisfy V - D = 0. Therefore,
E[ can be expressed as the curl of the vector potential F by

1
Ep=-_VxF (3-16)

Substituting (3-16) into Maxwell’s curl equation
V x Hy = joeE (3-17)
reduces it to
VX Mg +joF)=0 (3-18)

From the vector identity of (3-6), it follows that

Hy =-V¢,, — joF (3-19)

where ¢,, represents an arbitrary magnetic scalar potential which is a function of position. Taking
the curl of (3-16)

VXEp=—LVXVxF=-1[VV.F- V¥ (3-20)
E E

and equating it to Maxwell’s equation

VXEp=-M — jouHp (3-21)

leads to
V’F + joueHp = VV - F —eM (3-22)
Substituting (3-19) into (3-22) reduces it to

V2F + k°F = —eM + V(V - F) + V(joueg,,) (3-23)
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By letting
. 1
V-F =—jouep, = ¢, = —jwﬂev -F (3-24)
reduces (3-23) to
V°F + k2F = —eM (3-25)
and (3-19) to
Hy = —joF - J_vw.F (3-26)
WUE

Once F is known, Ej can be found from (3-16) and Hy. from (3-26) or (3-21) with M = 0. It will be
shown later how to find F once M is known. It will be a solution to the inhomogeneous Helmholtz
equation of (3-25).

3.4 ELECTRIC AND MAGNETIC FIELDS FOR ELECTRIC (J)
AND MAGNETIC (M) CURRENT SOURCES

In the previous two sections we have developed equations that can be used to find the electric and
magnetic fields generated by an electric current source J and a magnetic current source M. The
procedure requires that the auxiliary potential functions A and F generated, respectively, by J and
M are found first. In turn, the corresponding electric and magnetic fields are then determined (E,, H,
due to A and E, Hr due to F). The total fields are then obtained by the superposition of the individual
fields due to A and F (J and M).

In summary form, the procedure that can be used to find the fields is as follows:

Summary

1. Specify J and M (electric and magnetic current density sources).
2. a. Find A (due to J) using

p kR
=il 327
\4

which is a solution of the inhomogeneous vector wave equation of (3-14).
b. Find F (due to M) using

. R
F=E///M R dav (3-28)
\%
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which is a solution of the inhomogeneous vector wave equation of (3-25). In (3-27) and
(3-28), k*> = w”ue and R is the distance from any point in the source to the observation
point. In a latter section, we will demonstrate that (3-27) is a solution to (3-14) as (3-28) is
to (3-25).

3. a. Find H, using (3-2a) and E, using (3-15). E, can also be found using Maxwell’s equation
of (3-10) with J = 0.

b. Find E using (3-16) and Hy using (3-26). Hy can also be found using Maxwell’s equation

of (3-21) with M = 0.

4. The total fields are then determined by

E=E,+E, = —joA —j——V(V.A) - LV xF (3-29)
o €
or
E—E,+E;,= —VxH, - 1VxF
=By F_jw£ - (3-29a)
and
1 o
H=H,+H;=-VXA—joF -j—V(V-F) (3-30)
u wuE
or
1 1
H=H,+H;=-VXxA- —VXE; (3-30a)
r Jou

Whether (3-15) or (3-10) is used to find E, and (3-26) or (3-21) to find H; depends largely upon
the problem. In many instances one may be more complex than the other or vice versa. In computing
fields in the far-zone, it will be easier to use (3-15) for E, and (3-26) for Hy because, as it will be
shown, the second term in each expression becomes negligible in that region.

3.5 SOLUTION OF THE INHOMOGENEOUS VECTOR POTENTIAL
WAVE EQUATION

In the previous section we indicated that the solution of the inhomogeneous vector wave equation of
(3-14) is (3-27).

To derive it, let us assume that a source with current density J,, which in the limit is an infinitesimal
source, is placed at the origin of a x, y, z coordinate system, as shown in Figure 3.2(a). Since the
current density is directed along the z-axis (J,), only an A, component will exist. Thus we can write
(3-14) as

VA, +KPA, = —pJ (3-31)

Z
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(b) Source not at origin
Figure 3.2 Coordinate systems for computing fields radiated by sources.
At points removed from the source (J, = 0), the wave equation reduces to
2 2 _
VA, +k°A, =0 (3-32)

Since in the limit the source is a point, it requires that A_ is not a function of direction (6 and ¢); in a
spherical coordinate system, A, = A_(r) where r is the radial distance. Thus (3-32) can be written as

VA1) + KAL) = —2 P [r i )] +I2A(r) = (3-33)

which when expanded reduces to

d*A,(r) 2 dA(r)
dr? r dr

+ KA, (r) =0 (3-34)

The partial derivative has been replaced by the ordinary derivative since A, is only a function of the
radial coordinate.
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The differential equation of (3-34) has two independent solutions

e—jkr
Ay =G (3-35)

r

e+jkr

A,=G, (3-36)

Equation (3-35) represents an outwardly (in the radial direction) traveling wave and (3-36) describes
an inwardly traveling wave (assuming an ¢/’ time variation). For this problem, the source is placed
at the origin with the radiated fields traveling in the outward radial direction. Therefore, we choose
the solution of (3-35), or

e—jkr
AZ . AZl = 1 - (3'37)
In the static case (w = 0,k = 0), (3-37) simplifies to
G
A=t (3-38)

which is a solution to the wave equation of (3-32), (3-33), or (3-34) when k = 0. Thus at points
removed from the source, the time-varying and the static solutions of (3-37) and (3-38) differ only
by the e/*" factor; or the time-varying solution of (3-37) can be obtained by multiplying the static
solution of (3-38) by e/

In the presence of the source (J, # 0) and k = 0, the wave equation of (3-31) reduces to

VA, = —ul, (3-39)

This equation is recognized to be Poisson’s equation whose solution is widely documented. The most
familiar equation with Poisson’s form is that relating the scalar electric potential ¢ to the electric
charge density p. This is given by

v =-~ (3-40)
£

whose solution is

b= L /// Ly (3-41)
dre r
\%

where 7 is the distance from any point on the charge density to the observation point. Since (3-39)
is similar in form to (3-40), its solution is similar to (3-41), or

_ M Te )
AZ_4ﬂ///rdv (3-42)
1%
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Equation (3-42) represents the solution to (3-31) when k = 0 (static case). Using the comparative

analogy between (3-37) and (3-38), the time-varying solution of (3-31) can be obtained by multiply-
ing the static solution of (3-42) by e*". Thus

_u e Jkr ,
AZ_E///JZ v (3-43)
Vv

which is a solution to (3-31).
If the current densities were in the x- and y-directions (J, and J,), the wave equation for each
would reduce to

VA +IPA, = —ul

X

2 24 —
VA, + kA, = —pl,

(3-44)
(3-45)

with corresponding solutions similar in form to (3-43), or

_H e—jkr ,
Ax—ﬂ///fx v (3-46)
Vv
_u e—jkr ,
Ay—@///fy v (3-47)
\%4

The solutions of (3-43), (3-46), and (3-47) allow us to write the solution to the vector wave equa-

tion of (3-14) as
_H ek
A—E///J , dv (3-48)
1%

If the source is removed from the origin and placed at a position represented by the primed coor-
dinates (x',’,7’), as shown in Figure 3.2(b), (3-48) can be written as

A(x )_ i J(_x/ ’ /)e -jkR dv/
»¥,2) = . » Y2 R (3-49)
%

where the primed coordinates represent the source, the unprimed the observation point, and R the
distance from any point on the source to the observation point. In a similar fashion we can show that
the solution of (3-25) is given by

F _ & M.V N A
(X,)’,Z)—E S R dv (3-50)
Vv
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If J and M represent linear densities (m™!), (3-49) and (3-50) reduce to surface integrals, or

H y o R
A=t
. //Jf(x’y’“ r & (3-51)
S
€ vy o R
F=5 [/ m
47;// SO0, ds (3-52)
S

For electric and magnetic currents I, and I,,,, (3-51) and (3-52) reduce to line integrals of the form

—jkR

A= ﬁ /C Ie(x’,y’,z/)eT ar (3-53)
—jkR

F= % /C L.y, )% ——dI (3-54)

3.6 FAR-FIELD RADIATION
The fields radiated by antennas of finite dimensions are spherical waves. For these radiators, a general

solution to the vector wave equation of (3-14) in spherical components, each as a function of r, 8, ¢,
takes the general form of

A = 4,A,(r,0,9) + 8gAg(r, 0, §) + A4A (1,0, ) (3-55)

The amplitude variations of r in each component of (3-55) are of the form 1 /7", n = 1,2, ... [1], [2].
Neglecting higher order terms of 1/r"(1/r" = 0,n = 2,3, ...) reduces (3-55) to

—jkr
A = [8,A1(0, §) + 8gA)0, ) + a,AL (0, ¢)J%, r— o (3-56)

The r variations are separable from those of 6 and ¢. This will be demonstrated in the chapters that
follow by many examples.
Substituting (3-56) into (3-15) reduces it to

E= %{—jwe‘jk’[ﬁr(O) +8pA5(0, ) + 84410, 9)]) + %{m} 4o (3-57)

The radial E-field component has no 1/r terms, because its contributions from the first and second
terms of (3-15) cancel each other.
Similarly, by using (3-56), we can write (3-2a) as

1) .o _jria ~ " 1
H= - { ;e ik [a,.(0) + agA:p(G,qS) — a¢Ag(0,¢)]} + r—z{---} + - (3-57a)

where n = 4/u/€ is the intrinsic impedance of the medium.
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Neglecting higher order terms of 1 /7", the radiated E- and H-fields have only 6 and ¢ components.
They can be expressed as

Far-Field Region
E, ~0 ) T
Eg =~ —jwAy { ‘ Ey = —joA ‘ (3-58a)
Ey ~ —joA, (for the 0 and ¢ components only
since E, ~ 0)
H,.~0 ] R
E H~a’xE—jwﬁxA

RO) ¢ A= X By =—j—a,

HH [ +];A¢ = —7 L = n n (3-58b)
® E, (for the 8 and ¢ components only

Hy =~ _J;A9 - +7 since H, ~ 0)

Radial field components exist only for higher order terms of 1/7".
In a similar manner, the far-zone fields due to a magnetic source M (potential F) can be written as

Far-Field Region
H,.~0
Hy = —joFy \ = Hp=—joF (3-59)
Hy ~ —jwF, (for the 0 and ¢ components only
since H, ~ 0)
E ~0 )
Ep = —jonFy=nH, \o Ep=-nd xHp=jon, xF (3-59b)
Ey ~ +jonFy = —nH, (for the 6 and ¢ components only

since E, ~ 0)

Simply stated, the corresponding far-zone E- and H-field components are orthogonal to each
other and form TEM (to r) mode fields. This is a very useful relation, and it will be adopted in the
chapters that follow for the solution of the far-zone radiated fields. The far-zone (far-field) region
for a radiator is defined in Figures 2.7 and 2.8. Its smallest radial distance is 2D? /A where D is the
largest dimension of the radiator.

3.7 DUALITY THEOREM

When two equations that describe the behavior of two different variables are of the same mathe-
matical form, their solutions will also be identical. The variables in the two equations that occupy
identical positions are known as dual quantities and a solution of one can be formed by a systematic
interchange of symbols to the other. This concept is known as the duality theorem.

Comparing Equations (3-2a), (3-3), (3-10), (3-14), and (3-15) to (3-16), (3-17), (3-21), (3-25),
and (3-26), respectively, it is evident that they are to each other dual equations and their variables
dual quantities. Thus knowing the solutions to one set (i.e., J # 0, M = 0), the solution to the other



138 RADIATION INTEGRALS AND AUXILIARY POTENTIAL FUNCTIONS

TABLE 3.1 Dual Equations for Electric (J) and
Magnetic (M) Current Sources

Electric Sources Magnetic Sources
J#0,M=0) J=0,M=#0)
VXE, = —jouH, VxH, = joeE,
VXHA—J+jw£E -VXE; =M+ jouH,
VA + %A = - V’F + ki°F = —eM
ij ij
A——///f Pl v
H =—V><A E =——V><F
A " F e
E, = —joA H; = —joF
WUE wUe

set (J =0,M # 0) can be formed by a proper interchange of quantities. The dual equations and
their dual quantities are listed, respectively in Tables 3.1 and 3.2 for electric and magnetic sources.
Duality only serves as a guide to form mathematical solutions. It can be used in an abstract manner
to explain the motion of magnetic charges giving rise to magnetic currents, when compared to their
dual quantities of moving electric charges creating electric currents. It must, however, be emphasized
that this is purely mathematical in nature since it is known, as of today, that there are no magnetic
charges or currents in nature.

3.8 RECIPROCITY AND REACTION THEOREMS

We are all well familiar with the reciprocity theorem, as applied to circuits, which states that “in any
network composed of linear, bilateral, lumped elements, if one places a constant current (voltage)
generator between two nodes (in any branch) and places a voltage (current) meter between any
other two nodes (in any other branch), makes observation of the meter reading, then interchanges
the locations of the source and the meter, the meter reading will be unchanged” [3]. We want now to
discuss the reciprocity theorem as it applies to electromagnetic theory. This is done best by the use
of Maxwell’s equations.

TABLE 3.2 Dual Quantities for Electric (J) and Magnetic
(M) Current Sources

Electric Sources Magnetic Sources
J#0,M=0) J=0,M#0)
E, H,

H, -E,

J M
A F
2 H
U €
k k
n 1/n
1/n n
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Let us assume that within a linear and isotropic medium, but not necessarily homogeneous, there
exist two sets of sources J;, M, and J,, M, which are allowed to radiate simultaneously or individ-
ually inside the same medium at the same frequency and produce fields E;, H; and E,, H,, respec-
tively. It can be shown [1], [2] that the sources and fields satisfy
-V-(E xH,-E,xH)=E;-J,+H,-M, —-E, -J, -H; - M, (3-60)
which is called the Lorentz Reciprocity Theorem in differential form.

Taking a volume integral of both sides of (3-60) and using the divergence theorem on the left side,
we can write it as

—ﬂ(Elez—EQXHl)- ds’'
N

Vv

which is designated as the Lorentz Reciprocity Theorem in integral form.
For a source-free (J; = J, = M| =M, = 0) region, (3-60) and (3-61) reduce, respectively, to

‘ V.(E, xH,—E,xH,)=0 (3-62)

and

.#(El XxH,—E, xH))- ds' =0 (3-63)
S

Equations (3-62) and (3-63) are special cases of the Lorentz Reciprocity Theorem and must be sat-
isfied in source-free regions.

As an example of where (3-62) and (3-63) may be applied and what they would represent, consider
a section of a waveguide where two different modes exist with fields E;, H; and E,, H,. For the
expressions of the fields for the two modes to be valid, they must satisfy (3-62) and/or (3-63).

Another useful form of (3-61) is to consider that the fields (E;,H;, E,,H,) and the sources
J;,M;,J,,M,) are within a medium that is enclosed by a sphere of infinite radius. Assume that
the sources are positioned within a finite region and that the fields are observed in the far field (ide-
ally at infinity). Then the left side of (3-61) is equal to zero, or

ﬁ(El xH,—E, xH,)- ds'=0 (3-64)
S
which reduces (3-61) to

// (E; -, +H, -M; -E,-J, -H -My) dv' =0 (3-65)
v
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Equation (3-65) can also be written as

// E,-J,-H-My) &/ = // (E,-J, -H, -M,) &' (3-66)
% %

The reciprocity theorem, as expressed by (3-66), is the most useful form.

A close observation of (3-61) reveals that it does not, in general, represent relations of power
because no conjugates appear. The same is true for the special cases represented by (3-63) and
(3-66). Each of the integrals in (3-66) can be interpreted as a coupling between a set of fields and a
set of sources, which produce another set of fields. This coupling has been defined as Reaction [4]
and each of the integrals in (3-66) are denoted by

2= [[[ @ -1y (3-67)
\4

2.1) =///(E2 J,—H,-M,)dv (3-68)
Vv

The relation (1,2) of (3-67) relates the reaction (coupling) of fields (E;, H;), which are pro-
duced by sources J;, M, to sources (J,, M,), which produce fields E,, H,; (2, 1) relates the reaction
(coupling) of fields (E,, H,) to sources (J;, M, ). For reciprocity to hold, it requires that the reaction
(coupling) of one set of sources with the corresponding fields of another set of sources must be equal
to the reaction (coupling) of the second set of sources with the corresponding fields of the first set
of sources, and vice versa. In equation form, it is written as

(1,2) =(2, 1) (3-69)

3.8.1 Reciprocity for Two Antennas

There are many applications of the reciprocity theorem. To demonstrate its potential, an antenna
example will be considered. Two antennas, whose input impedances are Z; and Z,, are separated
by a linear and isotropic (but not necessarily homogeneous) medium, as shown in Figure 3.3. One
antenna (#1) is used as a transmitter and the other (#2) as a receiver. The equivalent network of
each antenna is given in Figure 3.4. The internal impedance of the generator Z, is assumed to be
the conjugate of the impedance of antenna #1 (Z, = Z = R, — jX) while the load impedance Z;
is equal to the conjugate of the impedance of antenna #2 (Z; = Z5 = R, — jX;). These assumptions
are made only for convenience.

;
:
/

[~

#1 #2 2

\“W*W\”/

Figure 3.3 Transmitting and receiving antenna systems.

B
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Zy, =Ry —jX, @—l
Q/D Vil Zy =Ry +jX, Z

B D

I
=

2 HiXy Z;, =Ry —jXa

Figure 3.4 Two-antenna system with conjugate loads.

The power delivered by the generator to antenna #1 is given by (2-83) or

1 1
Py = 3RelV|[{] = 7Re (

V.Z vy \Ak
g1 ) 3 _ g (3-70)

Zy+Z,) Z+Z) | 8R

If the transfer admittance of the combined network consisting of the generator impedance, antennas,
and load impedance is Y5, the current through the load is V,Y,, and the power delivered to the
load is

Py = IRe[Z,(V, Y5 )(V Yo )] = 1Ry |V 1Yy, P (3-71)

The ratio of (3-71) to (3-70) is

P
1

In a similar manner, we can show that when antenna #2 is transmitting and #1 is receiving, the
power ratio of P /P, is given by

Py 2
P, 4RR, Y] (3-73)
2
Under conditions of reciprocity (Y}, = Y5), the power delivered in either direction is the same.

3.8.2 Reciprocity for Antenna Radiation Patterns

The radiation pattern is a very important antenna characteristic. Although it is usually most conve-
nient and practical to measure the pattern in the receiving mode, it is identical, because of reciprocity,
to that of the transmitting mode.

Reciprocity for antenna patterns is general provided the materials used for the antennas and feeds,
and the media of wave propagation are linear. Nonlinear devices, such as diodes, can make the
antenna system nonreciprocal. The antennas can be of any shape or size, and they do not have to
be matched to their corresponding feed lines or loads provided there is a distinct single propagating
mode at each port. The only other restriction for reciprocity to hold is for the antennas in the transmit
and receive modes to be polarization matched, including the sense of rotation. This is necessary so
that the antennas can transmit and receive the same field components, and thus total power. If the
antenna that is used as a probe to measure the fields radiated by the antenna under test is not of the
same polarization, then in some situations the transmit and receive patterns can still be the same. For
example, if the transmit antenna is circularly polarized and the probe antenna is linearly polarized,



142 RADIATION INTEGRALS AND AUXILIARY POTENTIAL FUNCTIONS

Observation Observation
sphere sphere

2 . 2 ,*

| R O ’% . R \:@2 “#2
— 59;‘,4’ - 0,6

@_ 1

Test antenna (#1) Test antenna (#1)

(a) (b)

Figure 3.5 Antenna arrangement for pattern measurements and reciprocity theorem.

then if the linearly polarized probe antenna is used twice and it is oriented one time to measure the
6-component and the other the ¢-component, then the sum of the two components can represent
the pattern of the circularly polarized antenna in either the transmit or receive modes. During this
procedure, the power level and sensitivities must be held constant.

To detail the procedure and foundation of pattern measurements and reciprocity, let us refer to
Figures 3.5(a) and (b). The antenna under test is #1 while the probe antenna (#2) is oriented to
transmit or receive maximum radiation. The voltages and currents V;, I; at terminals 11 of antenna
#1 and V,, I, at terminals 2—2 of antenna #2 are related by

Vi=Znh+Zpl,

3-74
Vo =21 + 2yl (3-74)

where

Z,, = self-impedance of antenna #1
Z,, = self-impedance of antenna #2
Z\5,7Z,, = mutual impedances between antennas #1 and #2
If a current /; is applied at the terminals 1-1 and voltage V, (designated as V,,.) is measured at
the open (I, = 0) terminals of antenna #2, then an equal voltage V;,,. will be measured at the open

(I; = 0) terminals of antenna #1 provided the current /, of antenna #2 is equal to /;. In equation
form, we can write

1%
Zy, = IL (3-75a)
1 lL=0
1%
7, = =% (3-75b)
I
2 lp=0

If the medium between the two antennas is linear, passive, isotropic, and the waves monochro-
matic, then because of reciprocity

=7, (3-76)
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If in addition I} = I,, then

V20C = Vloc (3-77)

The above are valid for any position and any configuration of operation between the two antennas.

Reciprocity will now be reviewed for two modes of operation. In one mode, antenna #1 is held
stationary while #2 is allowed to move on the surface of a constant radius sphere, as shown in Fig-
ure 3.5(a). In the other mode, antenna #2 is maintained stationary while #1 pivots about a point, as
shown in Figure 3.5(b).

In the mode of Figure 3.5(a), antenna #1 can be used either as a transmitter or receiver. In the
transmitting mode, while antenna #2 is moving on the constant radius sphere surface, the open ter-
minal voltage V,,. is measured. In the receiving mode, the open terminal voltage V. is recorded.
The three-dimensional plots of V,,. and V., as a function of 6 and ¢, have been defined in Sec-
tion 2.2 as field patterns. Since the three-dimensional graph of V,,. is identical to that of V. (due
to reciprocity), the transmitting (V,,,.) and receiving (V,,.) field patterns are also equal. The same
conclusion can be arrived at if antenna #2 is allowed to remain stationary while #1 rotates, as shown
in Figure 3.5(b).

The conditions of reciprocity hold whether antenna #1 is used as a transmitter and #2 as a receiver
or antenna #2 as a transmitter and #1 as a receiver. In practice, the most convenient mode of operation
is that of Figure 3.5(b) with the test antenna used as a receiver. Antenna #2 is usually placed in the
far-field of the test antenna (#1), and vice versa, in order that its radiated fields are plane waves in
the vicinity of #1.

The receiving mode of operation of Figure 3.5(b) for the test antenna is most widely used to mea-
sure antenna patterns because the transmitting equipment is, in most cases, bulky and heavy while
the receiver is small and lightweight. In some cases, the receiver is nothing more than a simple diode
detector. The transmitting equipment usually consists of sources and amplifiers. To make precise
measurements, especially at microwave frequencies, it is necessary to have frequency and power
stabilities. Therefore, the equipment must be placed on stable and vibration-free platforms. This can
best be accomplished by allowing the transmitting equipment to be held stationary and the receiving
equipment to rotate.

An excellent manuscript on test procedures for antenna measurements of amplitude, phase,
impedance, polarization, gain, directivity, efficiency, and others has been published by IEEE [5].
A condensed summary of it is found in [6], and a review is presented in Chapter 17 of this text.
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PROBLEMS

3.1. IfH, =jwe V x II,, where II, is the electric Hertzian potential, show that
(@ VL + /200, = j——]  (b) E, = &I, + V(V - T0)
wE

1
(¢ II,=——A
wUE
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3.2. IfE;, = —jouV X II,, where II,, is the magnetic Hertzian potential, show that
(@ VI, + KT, = j——M  (b) H,, = K00, + V(V - T0,)
op

© Ty =—j—F
3.3.  Verify that (3-35) and (3-36) are solutions to (3-34).
3.4. Show that (3-42) is a solution to (3-39) and (3-43) is a solution to (3-31).
3.5. Verify (3-57) and (3-57a).
3.6. Derive (3-60) and (3-61).
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Linear Wire Antennas

4.1 INTRODUCTION

Wire antennas, linear or curved, are some of the oldest, simplest, cheapest, and in many cases the
most versatile for many applications. It should not then come as a surprise to the reader that we begin
our analysis of antennas by considering some of the oldest, simplest, and most basic configurations.
Initially we will try to minimize the complexity of the antenna structure and geometry to keep the
mathematical details to a minimum.

4.2 INFINITESIMAL DIPOLE

An infinitesimal linear wire (I < M) is positioned symmetrically at the origin of the coordinate system
and oriented along the z axis, as shown in Figure 4.1(a). Although infinitesimal dipoles are not very
practical, they are used to represent capacitor-plate (also referred to as fop-hat-loaded) antennas. In
addition, they are utilized as building blocks of more complex geometries. The end plates are used
to provide capacitive loading in order to maintain the current on the dipole nearly uniform. Since
the end plates are assumed to be small, their radiation is usually negligible. The wire, in addition to
being very small (I < A), is very thin (a < A). The spatial variation of the current is assumed to be
constant and given by

IZ) =2, 4-1)

where I, = constant.

4.2.1 Radiated Fields

To find the fields radiated by the current element, the two-step procedure of Figure 3.1 is used. It will
be required to determine first A and F and then find the E and H. The functional relation between A
and the source J is given by (3-49), (3-51), or (3-53). Similar relations are available for F and M, as
given by (3-50), (3-52), and (3-54).

Antenna Theory: Analysis and Design, Fourth Edition. Constantine A. Balanis.
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(a) Infinitesimal dipole

(b) Electric field orientation

Figure 4.1 Geometrical arrangement of an infinitesimal dipole and its associated electric-field components
on a spherical surface.

Since the source only carries an electric current I, I, and the potential function F are zero. To
find A we write

Ay =2 [ Ly HEE 4-2
LV, 2) = ) LY, 2) (4-2)
T lol R

where (x, y, z) represent the observation point coordinates, (x', y', z') represent the coordinates of the
source, R is the distance from any point on the source to the observation point, and path C is along
the length of the source. For the problem of Figure 4.1

Ie(x/,y/,z') =4al, (4-3a)

/ /

x' =y =7 =0 (infinitesimal dipole) (4-3b)
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R= \/(x—x’)2+(y—y’)2+(z—z’)2: \/x2+y2+22

= r = constant (4-3¢)
dl' = d7 (4-3d)
so we can write (4-2) as
. uly i +/2 ;o ulyl i
A(x,y,7) = 4 —2 gk d7 = a =0 pikr }
7.2 =4, 4nre _/_1/2 L= 4nre (@-4)

The next step of the procedure is to find H, using (3-2a) and then E, using (3-15) or (3-10)
with J = 0. To do this, it is often much simpler to transform (4-4) from rectangular to spherical
components and then use (3-2a) and (3-15) or (3-10) in spherical coordinates to find H and E.

The transformation between rectangular and spherical components is given, in matrix form, by
(VII-12a) (see Appendix VII)

A, sinfcos¢ sinfsing cosb A,
lAQ] = lcos&cosd) cos 0 sin ¢ —sin@] lAy] 4-5)
Ay —sing cos ¢ 0 A,

For this problem, A, = A = 0, so (4-5) using (4-4) reduces to

,uIOle_jk’
A, =A cosf = cos @ (4-6a)
' nr
. Mlole_jkr .
Ap=—A sinf = ————sin0 (4-6b)
nr
Ay=0 (4-6¢)

Using the symmetry of the problem (no ¢ variations), (3-2a) can be expanded in spherical coor-
dinates and written in simplified form as

H= ﬁ¢L [i(rA OAr] 4-7)

Substituting (4-6a)—(4-6¢) into (4-7) reduces it to

Hy = (4-8a)
kIOl smH [ — (4-8b)

The electric field E can now be found using (3-15) or (3-10) with J = 0. That is,

E=E, = —joA - j——V(V-A) = ——VxH (4-9)
ot Jjowe
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Substituting (4-6a)—(4-6¢) or (4-8a)—(4-8b) into (4-9) reduces it to

£ = nlolcos (7] 1+ L it (4-102)
" 2712 Jkr
klylsin 0 1 1 .
E, =1 1 - —jkr -
A [ " jhr (kr)2] ¢ (4-10b)
Ey=0 (4-10¢)

The E- and H-field components are valid everywhere, except on the source itself, and they are
sketched in Figure 4.1(b) on the surface of a sphere of radius r. It is a straightforward exercise to
verify Equations (4-10a)—(4-10c), and this is left as an exercise to the reader (Prob. 4.14).

4.2.2 Power Density and Radiation Resistance

The input impedance of an antenna, which consists of real and imaginary parts, was discussed in
Section 2.13. For a lossless antenna, the real part of the input impedance was designated as radiation
resistance. It is through the mechanism of the radiation resistance that power is transferred from the
guided wave to the free-space wave. To find the input resistance for a lossless antenna, the Poynting
vector is formed in terms of the E- and H-fields radiated by the antenna. By integrating the Poynting
vector over a closed surface (usually a sphere of constant radius), the total power radiated by the
source is found. The real part of it is related to the input resistance.

For the infinitesimal dipole, the complex Poynting vector can be written using (4-8a)—(4-8b) and
(4-10a)—(4-10c) as

W= %(E x H*) = %(ﬁ,Er +8,Eq) X (44HY)

= %(ﬁ,Eng — AyE,H,") (4-11)

whose radial W, and transverse W, components are given, respectively, by

n Lol % sin2 6 .1
W=~ | 1 —j—o 4-12
S N BT RTeE 12
— kllollzcosé’sine N 1 (4-12b)
0T o2 (kr?

The complex power moving in the radial direction is obtained by integrating (4-11)—
(4-12b) over a closed sphere of radius r. Thus it can be written as

2r 4
P=ﬂw- ds=/ / &, W, + 8, W) - &1 sin 0 d6 do (“13)
0 0
S

which reduces to

Il

A

? 1
[1 - (kr>3] (1D

2 T T
P:/ / W,r?sin0 do dp = n=
0 0 3
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The transverse component W, of the power density does not contribute to the integral. Thus (4-14)
does not represent the total complex power radiated by the antenna. Since W, as given by (4-12b),
is purely imaginary, it will not contribute to any real radiated power. However, it does contribute to
the imaginary (reactive) power which along with the second term of (4-14) can be used to determine
the total reactive power of the antenna. The reactive power density, which is most dominant for
small values of kr, has both radial and transverse components. It merely changes between outward
and inward directions to form a standing wave at a rate of twice per cycle. It also moves in the
transverse direction as suggested by (4-12Db).

Equation (4-13), which gives the real and imaginary power that is moving outwardly, can also be

written as
2
1 p/1 1
P== [ ExH*- ds= <—> | —j——
2// 3 Ty
S

= P +j20(W,, —W,) (4-15)

A

where
P = power (in radial direction)
P4 = time-average power radiated

W,, = time-average magnetic energy density (in radial direction)

W, = time-average electric energy density (in radial direction)

2a)(Wm - VVe) = time-average imaginary (reactive) power (in radial direction)

From (4-14)
7\ 1ol |?
Pog=mn (5) - (4-16)
and
5 - o\ ol 1
20(W, —W,) = —n (5) Tl o (4-17)

It is clear from (4-17) that the radial electric energy must be larger than the radial magnetic energy.
For large values of kr (kr > 1 or r > J), the reactive power diminishes and vanishes when kr = oo.

Since the antenna radiates its real power through the radiation resistance, for the infinitesimal
dipole it is found by equating (4-16) to

P = (f) Iol* _ LR (4-18)
rad = 1 3 Y - 2 0 r
where R, is the radiation resistance. Equation (4-18) reduces to
27\ (12 1\?

R, = (-)(-) = 80 2(—) 4-19

=175 )5 7 \x (4-19)

for a free-space medium (n ~ 120x). It should be pointed out that the radiation resistance of (4-19)
represents the total radiation resistance since (4-12b) does not contribute to it.



150 LINEAR WIRE ANTENNAS

For a wire antenna to be classified as an infinitesimal dipole, its overall length must be very small
(usually / < A/50).

Example 4.1

Find the radiation resistance of an infinitesimal dipole whose overall length is [ = A/50.
Solution: Using (4-19)

2 2
R, = 807> (%) — 807 (%) — 0.316 ohms

Since the radiation resistance of an infinitesimal dipole is about 0.3 ohms, it will present a very
large mismatch when connected to practical transmission lines, many of which have characteristic
impedances of 50 or 75 ohms. The reflection efficiency (e,) and hence the overall efficiency (e()
will be very small.

The reactance of an infinitesimal dipole is capacitive. This can be illustrated by considering the
dipole as a flared open-circuited transmission line, as discussed in Section 1.4. Since the input
impedance of an open-circuited transmission line a distance //2 from its open end is given by
Z;, = —jZ.cot (fl/2), where Z, is its characteristic impedance, it will always be negative (capacitive)
for l < A

4.2.3 Radian Distance and Radian Sphere

The E- and H-fields for the infinitesimal dipole, as represented by (4-8a)—(4-8b) and (4-10a)—(4-
10c), are valid everywhere (except on the source itself). An inspection of these equations reveals
the following:

a. Atadistance r = A/2x (or kr = 1), which is referred to as the radian distance, the magnitude
of the first and second terms within the brackets of (4-8b) and (4-10a) is the same. Also at
the radian distance the magnitude of all three terms within the brackets of (4-10b) is identical;
the only term that contributes to the total field is the second, because the first and third terms
cancel each other. This is illustrated in Figure 4.2.

b. Atdistances less than the radian distance r < A/2z (kr < 1), the magnitude of the second term
within the brackets of (4-8b) and (4-10a) is greater than the first term and begins to dominate
as r < A/2zx. For (4-10b) and r < A/2x, the magnitude of the third term within the brackets
is greater than the magnitude of the first and second terms while the magnitude of the second
term is greater than that of the first one; each of these terms begins to dominate as r << A/2x.
This is illustrated in Figure 4.2. The region r < A/2x (kr < 1) is referred to as the near-field
region, and the energy in that region is basically imaginary (stored).

c. At distances greater than the radian distance r > A/2z (kr > 1), the first term within the
brackets of (4-8b) and (4-10a) is greater than the magnitude of the second term and begins
to dominate as r > A/2x (kr> 1). For (4-10b) and r > A/2x, the first term within the
brackets is greater than the magnitude of the second and third terms while the magni-
tude of the second term is greater than that of the third; each of these terms begins
to dominate as r > A/2zx. This is illustrated in Figure 4.2. The region r > A/2x (kr >
1) is referred to as the intermediate-field region while that for r > A/27x (kr > 1) is
referred to as the far-field region, and the energy in that region is basically real (radi-
ated).
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imal dipole.

Magnitude variation, as a function of the radial distance, of the field terms radiated by an infinites-

d. The sphere with radius equal to the radian distance (r = A/2x) is referred as the radian sphere,
and it defines the region within which the reactive power density is greater than the radiated
power density [1]—[3]. For an antenna, the radian sphere represents the volume occupied
mainly by the stored energy of the antenna’s electric and magnetic fields. Outside the radian
sphere the radiated power density is greater than the reactive power density and begins to
dominate as r > A/2x. Therefore the radian sphere can be used as a reference, and it defines
the transition between stored energy pulsating primarily in the +0 direction [represented
by (4-12b)] and energy radiating in the radial (r) direction [represented by the first term of
(4-12a); the second term represents stored energy pulsating inwardly and outwardly in the
radial (r) direction]. Similar behavior, where the power density near the antenna is primarily
reactive and far away is primarily real, is exhibited by all antennas, although not exactly at

the radian distance.

4.2.4 Near-Field (kr < 1) Region

An inspection of (4-8a)—(4-8b) and (4-10a)—(4-10c) reveals that for kr < A or r < A/27x they can
be reduced in much simpler form and can be approximated by

Iylekr

27kr3 cos 0

Er = —ji’]

(4-20a)

kr <1 (4-200)

(4-20c)

(4-20d)
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The E-field components, E, and E,, are in time-phase but they are in time-phase quadrature with the

H-field component H ; therefore there is no time-average power flow associated with them. This is
demonstrated by forming the time-average power density as

W, = %Re[E x H*] = %Re[ﬁrEgH*¢ - ﬁgE,H*d,] (4-21)
which by using (4-20a)—(4-20d) reduces to

Iyl

4

w =1Rel a

% sin% 0 11!1? sin 6 cos 6
av 2 - T z - =z =

N
- =0 4-22
IS Al 8r2 r (“4-22)

The condition of kr << 1 can be satisfied at moderate distances away from the antenna provided that
the frequency of operation is very low. Equations (4-20a) and (4-20b) are similar to those of a static
electric dipole and (4-20d) to that of a static current element. Thus we usually refer to (4-20a)—
(4-20d) as the quasistationary fields.

4.2.5 Intermediate-Field (kr > 1) Region

As the values of kr begin to increase and become greater than unity, the terms that were dominant
for kr <« 1 become smaller and eventually vanish. For moderate values of kr the E-field components
lose their in-phase condition and approach time-phase quadrature. Since their magnitude is not the
same, in general, they form a rotating vector whose extremity traces an ellipse. This is analogous to
the polarization problem except that the vector rotates in a plane parallel to the direction of prop-
agation and is usually referred to as the cross field. At these intermediate values of kr, the E, and
H, components approach time-phase, which is an indication of the formation of time-average power
flow in the outward (radial) direction (radiation phenomenon).

As the values of kr become moderate (kr > 1), the field expressions can be approximated again
but in a different form. In contrast to the region where kr < 1, the first term within the brackets in
(4-8b) and (4-10a) becomes more dominant and the second term can be neglected. The same is true
for (4-10b) where the second and third terms become less dominant than the first. Thus we can write
for kr > 1

Iole_jk’

E, =n——5-cosd (4-23a)

_ klle7kr p

~jn sin }
e L (4-23b)
Ey=H,=Hy=0 (4-23c¢)
klyle ¥
Hy ~j Ay sin @ ) (4-23d)
The total electric field is given by

E =4, +4,E, (4-24)

whose magnitude can be written as

|E| = \/IE,|* + |Ep|? (4-25)
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4.2.6 Far-Field (kr > 1) Region

Since (4-23a)—(4-23d) are valid only for values of kr > 1 (r > 1), then E,. will be smaller than E,
because E, is inversely proportional to 7> where E,, is inversely proportional to r. In a region where
kr > 1, (4-23a)—(4-23d) can be simplified and approximated by

klyle /"
R ¢ sino (4-26a)
r
ErﬁE¢=Hr=H0=O ke > 1 (4-26b)
klgle
H¢ =] 4ﬂr sin 0 (4'260)
The ratio of E, to H, is equal to

Eg
=— 7y (4-27)

w H¢

where

Z,, = wave impedance

n = intrinsic impedance (377 ~ 120z ohms for free-space)

The E- and H-field components are perpendicular to each other, transverse to the radial direction
of propagation, and the r variations are separable from those of 8 and ¢. The shape of the pattern is
not a function of the radial distance r, and the fields form a Transverse ElectroMagnetic (TEM) wave
whose wave impedance is equal to the intrinsic impedance of the medium. As it will become even
more evident in later chapters, this relationship is applicable in the far-field region of all antennas of
finite dimensions. Equations (4-26a)—(4-26c) can also be derived using the procedure outlined and
relationships developed in Section 3.6. This is left as an exercise to the reader (Prob. 4.15).

Example 4.2
For an infinitesimal dipole determine and interpret the vector effective length [see Section 2.15,
Figure 2.29(a)]. At what incidence angle does the open-circuit maximum voltage occurs at the
output terminals of the dipole if the electric-field intensity of the incident wave is 10 mV/m? The
length of the dipole is 10 cm.
Solution: Using (4-26a) and the effective length as defined by (2-92), we can write that

Eo klgle % D a klye %" (8, 1sin )
= = —a - (—a
0 =Jn ?ln oM A ol sin
A kIOe_fk’ ’
= —agjn A e

Therefore, the effective length is

‘¢, = —ﬁel sin @

e
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whose maximum value occurs when 8 = 90°, and it is equal to /. Therefore, to achieve maximum
output the wave must be incident upon the dipole at a normal incidence angle (0 = 90°).
The open-circuit maximum voltage is equal to

Voelmax = 1E - @l max = 18510 x 1073 - (=4, 5in 0)] 0

=10x 10731 = 1073 volts

4.2.7 Directivity

The real power P, radiated by the dipole was found in Section 4.2.2, as given by (4-16). The
same expression can be obtained by first forming the average power density, using (4-26a)—(4-26c).
That is,

kIl

4

2 .
sin% @

72

1 o a1 AN
Way = SRe(Ex HY) = a,E|E9|2 =4,5

(4-28)

Integrating (4-28) over a closed sphere of radius » reduces it to (4-16). This is left as an exercise to
the reader (Prob. 4.15).
Associated with the average power density of (4-28) is a radiation intensity U which is given by

> n klol 2 .2 r2 2
U=r W, = 5 E sin“ 0 = 2—’1|E9(r, 0, )| (4-29)

and it conforms with (2-12a). The normalized pattern of (4-29) is shown in Figure 4.3. The maximum
value occurs at § = /2 and it is equal to

2
n [ klyl
Unix = 5 <ﬁ> (4-30)
Using (4-16) and (4-30), the directivity reduces to
U, 3
Dy=dn—== =3 4-31
P rad 2 ( )
and the maximum effective aperture to
22 30?2
A =|—)Dy=— _
en <4ﬂ> 07 gx (4-32)

The radiation resistance of the dipole can be obtained by the definition of (4-18). Since the radiated
power obtained by integrating (4-28) over a closed sphere is the same as that of (4-16), the radiation
resistance using it will also be the same as obtained previously and given by (4-19).

Integrating the complex Poynting vector over a closed sphere, as was done in (4-13), results in
the power (real and imaginary) directed in the radial direction. Any transverse components of power
density, as given by (4-12b), will not be captured by the integration even though they are part of the
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Radiation pattern
U=sin’ g

Pipole antennaQ‘

Figure 4.3 Three-dimensional radiation pattern of infinitesimal dipole.

overall power. Because of this limitation, this method cannot be used to derive the input reactance
of the antenna.

The procedure that can be used to derive the far-zone electric and magnetic fields radiated by an
antenna, along with some of the most important parameters/figures of merit that are used to describe
the performance of an antenna, are summarized in Table 4.1.

4.3 SMALL DIPOLE

The creation of the current distribution on a thin wire was discussed in Section 1.4, and it was
illustrated with some examples in Figure 1.16. The radiation properties of an infinitesimal dipole,
which is usually taken to have a length [ < A/50, were discussed in the previous section. Its current
distribution was assumed to be constant. Although a constant current distribution is not realizable
(other than top-hat-loaded elements), it is a mathematical quantity that is used to represent actual
current distributions of antennas that have been incremented into many small lengths.

A better approximation of the current distribution of wire antennas, whose lengths are usu-
ally /50 <1< A/10, is the triangular variation of Figure 1.16(a). The sinusoidal variations of
Figures 1.16(b)—(c) are more accurate representations of the current distribution of any length
wire antenna.

The most convenient geometrical arrangement for the analysis of a dipole is usually to have it
positioned symmetrically about the origin with its length directed along the z-axis, as shown in
Figure 4.4(a). This is not necessary, but it is usually the most convenient. The current distribution of
a small dipole (A/50 < [ < A/10) is shown in Figure 4.4(b), and it is given by

ﬁzlo(l—%z'), 0<Z <12
L.y, 7) = ) (4-33)
al, (1+71/), -1/2<7 <0

where I, = constant.
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TABLE 4.1 Summary of Procedure to Determine the Far-Field Radiation Characteristics of
an Antenna

1. Specify electric and/or magnetic current densities J, M [physical or equivalent (see Chapter 3,
Figure 3.1)]

2. Determine vector potential components A,, A, and/or Fyy, F using (3-46)—(3-54) in far field

Find far-zone E and H radiated fields (E,, E;; H,, H,) using (3-58a)—(3-58b)

4. Form either
a.

hed

W, 0,0) = W, (r,0, ) = %Re[E x H]

~

Re [(8yE, +8,E,) X (3,H} +4,H)]

|Ey|” + |Ey|*
n r

| —

Wrad(r9 09 ¢) = ﬁr

NS

or

b- U(ey d)) = r2 Wrad(r$ 6’ (l)) = lf(e, ¢)|2

5. Determine either

27 T
a. Prad = /) '/0 Wrad(rv 07 ¢)r2 sin @ do d(l)

or

27 T
b. Prad = /0 /0 U(es d)) sin @ do d(l)

6.  Find directivity using

U@,¢) _ 4zU(0, ¢)

D0, ¢) =

UO P rad
U@, . 4nu(o, ax
D():Dmax =D(03¢)|max = ( ¢)|ma = ( ¢)|md
UO P rad
7. Form normalized power amplitude pattern:
U@, ¢)
P6.9) = ===
max
8. Determine radiation and input resistance:
2P, rad | Rr
r_|10|2’ in = 2(kl>
sin” | —
2
9.  Determine maximum effective area
7\2

= 0
em 47[
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P(r.0,¢)

(a) Dipole and geometry

1y

v ’?

Geometrical arrangement of dipole and current distribution.

(b) Current distribution

Following the procedure established in the previous section, the vector potential of (4-2) can be
written using (4-33) as

0 —jkR
A(x,y,z) = 4i [ﬁz/ Iy (1 + zz’) eT d7

T /2 l

/2 —jkR
A 2 4\ e” ’
+a/ IO<1——Z) dz
“Jo l R

Because the overall length of the dipole is very small (usually / < A/10), the values of R for different
values of 7’ along the length of the wire (/2 < 7/ < 1/2) are not much different from r. Thus R can
be approximated by R ~ r throughout the integration path. The maximum phase error in (4-34) by
allowing R = r for /50 < I < A/10, will be kl/2 = z/10 rad = 18° for / = A/10. Smaller values
will occur for the other lengths. As it will be shown in the next section, this amount of phase error
is usually considered negligible and has very little effect on the overall radiation characteristics.

(4-34)
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Performing the integration, (4-34) reduces to

IN —jkr
! [M] (4-35)

A=ad = ﬁzE 4rr

which is one-half of that obtained in the previous section for the infinitesimal dipole and given by
(4-4).

The potential function given by (4-35) becomes a more accurate approximation as kr — oo. This
is also the region of most practical interest, and it has been designated as the far-field region. Since
the potential function for the triangular distribution is one-half of the corresponding one for the
constant (uniform) current distribution, the corresponding fields of the former are one-half of the
latter. Thus we can write the E- and H-fields radiated by a small dipole as

N

klyle=kr
Ep =~ jn OSZr sin 6 (4-36a)
E,2Ey=H.=Hy =01 [r>»1| (4-36b)
klgle
Hy ~j sin@ (4-36¢)

J

with the wave impedance equal, as before, to (4-27).

Since the directivity of an antenna is controlled by the relative shape of the field or power pattern,
the directivity, and maximum effective area of this antenna are the same as the ones with the constant
current distribution given by (4-31) and (4-32), respectively.

The radiation resistance of the antenna is strongly dependent upon the current distribution. Using
the procedure established for the infinitesimal dipole, it can be shown that for the small dipole its
radiated power is one-fourth (%) of (4-18). Thus the radiation resistance reduces to

2P 1\2
R = Zmd _ 9 2(—) )
SERTATERY @37

which is also one-fourth (%) of that obtained for the infinitesimal dipole as given by (4-19). Their
relative patterns (shapes) are the same and are shown in Figure 4.3.

4.4 REGION SEPARATION

Before we attempt to solve for the fields radiated by a finite dipole of any length, it would be very
desirable to discuss the separation of the space surrounding an antenna into three regions; namely, the
reactive near-field, radiating near-field (Fresnel) and the far-field (Fraunhofer) which were intro-
duced briefly in Section 2.2.4. This is necessary because for a dipole antenna of any length and any
current distribution, it will become increasingly difficult to solve for the fields everywhere. Approx-
imations can be made, especially for the far-field (Fraunhofer) region, which is usually the one of
most practical interest, to simplify the formulation to yield closed form solutions. The same approx-
imations used to simplify the formulation of the fields radiated by a finite dipole are also used to
formulate the fields radiated by most practical antennas. So it will be very important to introduce
them properly and understand their implications upon the solution.
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The difficulties in obtaining closed form solutions that are valid everywhere for any practical
antenna stem from the inability to perform the integration of

mx%@=li/IuQﬂiﬁ1Tdﬂ (4-38)
47[ CL‘ R

where

R=1/G=2P+ -y + (-2 (4-38a)

For a finite dipole with sinusoidal current distribution, the integral of (4-38) can be reduced to a
closed form that is valid everywhere! This will be shown in Chapter 8. The length R is defined as
the distance from any point on the source to the observation point. The integral of (4-38) was used
to solve for the fields of infinitesimal and small dipoles in Sections 4.1 and 4.2. However in the
first case (infinitesimal dipole) R = r and in the second case (small dipole) R was approximated by
r(R =~ r) because the length of the dipole was restricted to be / < A/10. The major simplification of
(4-38) will be in the approximation of R.

A very thin dipole of finite length [ is symmetrically positioned about the origin with its length
directed along the z-axis, as shown in Figure 4.5(a). Because the wire is assumed to be very thin
(&' =y" =0), we can write (4-38) as

R= \/(x—x’)2+(y—y/)2+(z—z/)2 = \/x2+y2+(z—z’)2 (4-39)

which when expanded can be written as

R= \/(xz +2 +22) + (=222 + 72) = V2 + (=2r7 cos 0 + Z/?) (4-40)

where
=y 42 (4-40a)
z=rcos0 (4-40b)

Using the binomial expansion, we can write (4-40) in a series as

, 1 ZIZ .9 1 Z/3 .5
R=r—zcos0+—-|=sin"0 )+ —=| =—cosfOsin“0 )+ - (4-41)
r\ 2 2\ 2

whose higher order terms become less significant provided r > 7.
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(b) Geometrical arrangement for far-field approximations

Finite dipole geometry and far-field approximations.

4.4.1 Far-Field (Fraunhofer) Region

The most convenient simplification of (4-41), other than R ~ r, will be to approximate it by its first
two terms, or

R~r—7cos@ (4-42)

The most significant neglected term of (4-41) is the third whose maximum value is
”? ”
1 (Z— sin? 9> — 2 whenf=1/2 (4-43)
r\ 2 max r

When (4-43) attains its maximum value, the fourth term of (4-41) vanishes because § = 7z /2. It
can be shown that the higher order terms not shown in (4-41) also vanish. Therefore approximating
(4-41) by (4-42) introduces a maximum error given by (4-43).
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It has been shown by many investigators through numerous examples that for most practical
antennas, with overall lengths greater than a wavelength (I > \), a maximum total phase error of
/8 rad (22.5°) is not very detrimental in the analytical formulations. Using that as a criterion we
can write, using (4-43), that the maximum phase error should always be

k(z’)2
2r

< (4-44)

|y

which for —1/2 < 7/ < 1/2 reduces to

12
r>2 <X> (4-45)

Equation (4-45) simply states that to maintain the maximum phase error of an antenna equal to
or less than 7 /8 rad (22.5°), the observation distance » must equal or be greater than 22 /A where /
is the largest* dimension of the antenna structure. The usual simplification for the far-field region is
to approximate the R in the exponential (¢ 7R) of (4-38) by (4-42) and the R in the denominator of
(4-38) by R ~ r. These simplifications are designated as the far-field approximations and are usually
denoted in the literature as

Far-field Approximations

R~r—7cosé for phase terms

R~r for amplitude terms (4-46)

provided r satisfies (4-45).

It may be advisable to illustrate the approximation (4-46) geometrically. For R ~ r — 7’ cos 6,
where 0 is the angle measured from the z-axis, the radial vectors R and r must be parallel to each
other, as shown in Figure 4.5(b). For any other antenna whose maximum dimension is D, the approx-
imation of (4-46) is valid provided the observations are made at a distance

2
r> 2% (4-47)

For an aperture antenna the maximum dimension is taken to be its diagonal.

For most practical antennas, whose overall length is large compared to the wavelength, these are
adequate approximations which have been shown by many investigators through numerous examples
to give valid results in pattern predictions. Some discrepancies are evident in regions of low intensity
(usually below —25 dB). This is illustrated in Figure 2.9 where the patterns of a paraboloidal antenna
for R = oo and R = 2D? /) differ at levels below —25 dB. Allowing R to have a value of R = 4D? /A
gives better results.

It would seem that the approximation of R in (4-46) for the amplitude is more severe than that
for the phase. However a close observation reveals this is not the case. Since the observations are
made at a distance where r is very large, any small error in the approximation of the denominator
(amplitude) will not make much difference in the answer. However, because of the periodic nature
of the phase (repeats every 2z rad), it can be a major fraction of a period. The best way to illustrate
it will be to consider an example.

*Provided the overall length (/) of the antenna is large compared to the wavelength [see IEEE Standard Definitions of Terms
for Antennas, IEEE Std (145-1983)].



162 LINEAR WIRE ANTENNAS

Example 4.3

For an antenna with an overall length / = 5A, the observations are made at » = 60A. Find the
errors in phase and amplitude using (4-46).
Solution: For = 90°,7' = 2.5\, and r = 60\, (4-40) reduces to

R, = M/ (60)% + (2.5)2 = 60.052A
and (4-46) to
Ry, =r =60\
Therefore the phase difference is

A¢ = kAR = ZT”(R1 — R,) = 27(0.052) = 0.327 rad = 18.74°

which in an appreciable fraction (=~ 2i0) of a full period (360°).
The difference of the inverse values of R is

11 _1/1 1 _ 144 %107

R_Z_R_1=X<%_6o.osz> Py

which should always be a very small value in amplitude.

4.4.2 Radiating Near-Field (Fresnel) Region

If the observation point is chosen to be smaller than r = 2/2/\, the maximum phase error by the
approximation of (4-46) is greater than x /8 rad (22.5°) which may be undesirable in many applica-
tions. If it is necessary to choose observation distances smaller than (4-45), another term (the third)
in the series solution of (4-41) must be retained to maintain a maximum phase error of /8 rad
(22.5°). Doing this, the infinite series of (4-41) can be approximated by

?
R~r—7cosf+ 1 <% sin’ 9) (4-48)
r

The most significant term that we are neglecting from the infinite series of (4-41) is the fourth. To
find the maximum phase error introduced by the omission of the next most significant term, the angle
0 at which this occurs must be found. To do this, the neglected term is differentiated with respect to
0 and the result is set equal to zero. Thus

0 1 2’3 .2 Z’3 . .2 2
%= 7c0s9s1n 0| = ﬁsme[—sm 0 +2cos*0] =0 (4-49)

The angle 6 = 0 is not chosen as a solution because for that value the fourth term is equal to zero.
In other words, 8 = 0 gives the minimum error. The maximum error occurs when the second term
of (4-49) vanishes; that is when

[—sin’ 0 + 2 cos? 01p=0, =0 (4-50)



REGION SEPARATION 163
or
9, = tan"'(+V/2) (4-50)

If the maximum phase error is allowed to be equal or less than z /8 rad, the distance r at which this
occurs can be found from

13

Z .
=X cos@sin’ 0
2r2

3 3
7=1/2 :EZ—2<L> <g> =7 <l—2> S£ (4-51)
o=tan—! /2 A 8r \/5 3 12\/5 Ar 8

which reduces to

22 <B> = 0.385 <£> (4-52)
3v3 \% x

or
r>0.624/B /A (4-52a)

A value of r greater than that of (4-52a) will lead to an error less than z/8 rad (22.5°). Thus the
region where the first three terms of (4-41) are significant, and the omission of the fourth introduces
a maximum phase error of z /8 rad (22.5°), is defined by

2 /N> r > 0.624/ /) (4-53)

where [ is the length of the antenna. This region is designated as radiating near-field because the
radiating power density is greater than the reactive power density and the field pattern (its shape)
is a function of the radial distance r. This region is also called the Fresnel region because the field
expressions in this region reduce to Fresnel integrals.

The discussion has centered around the finite length antenna of length / with the observation
considered to be a point source. If the antenna is not a line source, / in (4-53) must represent the
largest dimension of the antenna (which for an aperture is the diagonal). Also if the transmitting
antenna has maximum length [, and the receiving antenna has maximum length l,, then the sum of
l, and 1, must be used in place of l in (4-53).

The boundaries for separating the far-field (Fraunhofer), the radiating near-field (Fresnel), and
the reactive near-field regions are not very rigid. Other criteria have also been established [4] but the
ones introduced here are the most “popular.” Also the fields, as the boundaries from one region to
the other are crossed, do not change abruptly but undergo a very gradual transition.

4.4.3 Reactive Near-Field Region

If the distance of observation is smaller than the inner boundary of the Fresnel region, this region is
usually designated as reactive near-field with inner and outer boundaries defined by

0.624/B/A>r>0 (4-54)

where [ is the length of the antenna. In this region the reactive power density predominates, as was
demonstrated in Section 4.1 for the infinitesimal dipole.
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In summary, the space surrounding an antenna is divided into three regions whose boundaries are
determined by

reactive near-field [0.624/D3 /A > r > 0]

(4-55a)
radiating near-field (Fresnel) [2D2/A > r > 0.62+/D3 /A (4-55b)
far-field (Fraunhofer) [co > r > 2D?/\] (4-55¢)

where D is the largest dimension of the antenna (D = [ for a wire antenna).

4.5 FINITE LENGTH DIPOLE

The techniques that were developed previously can also be used to analyze the radiation character-
istics of a linear dipole of any length. To reduce the mathematical complexities, it will be assumed
in this chapter that the dipole has a negligible diameter (ideally zero). This is a good approximation
provided the diameter is considerably smaller than the operating wavelength. Finite radii dipoles
will be analyzed in Chapters 8 and 9.

4.5.1 Current Distribution

For a very thin dipole (ideally zero diameter), the current distribution can be written, to a good
approximation, as

o adsin [(3-2)]. os<z<ip
Lo =0,y =0,7) = (4-56)
aysin[k(5+2)]. —i/2<2 <0

This distribution assumes that the antenna is center-fed and the current vanishes at the end points
(7 = +1/2). Experimentally it has been verified that the current in a center-fed wire antenna has
sinusoidal form with nulls at the end points. For / = A/2 and A/2 < [ < A the current distribution of
(4-56) is shown plotted in Figures 1.16(b) and 1.12(c), respectively. The geometry of the antenna is
that shown in Figure 4.5.

4.5.2 Radiated Fields: Element Factor, Space Factor, and Pattern Multiplication

For the current distribution of (4-56) it will be shown in Chapter 8 that closed form expressions for
the E- and H-fields can be obtained which are valid in all regions (any observation point except
on the source itself). In general, however, this is not the case. Usually we are limited to the far-field
region, because of the mathematical complications provided in the integration of the vector potential
A of (4-2). Since closed form solutions, which are valid everywhere, cannot be obtained for many
antennas, the observations will be restricted to the far-field region. This will be done first in order
to illustrate the procedure. In some cases, even in that region it may become impossible to obtain
closed form solutions.

The finite dipole antenna of Figure 4.5 is subdivided into a number of infinitesimal dipoles of
length Az’. As the number of subdivisions is increased, each infinitesimal dipole approaches a length
d7'. For an infinitesimal dipole of length d7’ positioned along the z-axis at 7/, the electric and magnetic
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field components in the far field are given, using (4-26a)—(4-26c¢), as

KLy e R

dEgy ~ jn IR sin 6 dz’ (4-57a)

dE, ~ dE, = dH, = dHy =0 (4-57b)
kI x/’ /’ / e_ij

dy = LT G g (4-57¢)

4R

where R is given by (4-39) or (4-40).
Using the far-field approximations given by (4-46), (4-57a) can be written as

kLY e IR

dEy ~ jn sin getke cos0 gt (4-58)

drr

Summing the contributions from all the infinitesimal elements, the summation reduces, in the limit,
to an integration. Thus

+1/2 ke—Ikr +1/2 ,
E,= / dE, = jn sin @ / Ie(x’,y’,z')e’kZ cosb gt (4-58a)
-1/2 4rxr —1/2

The factor outside the brackets is designated as the element factor and that within the brackets as
the space factor. For this antenna, the element factor is equal to the field of a unit length infinitesimal
dipole located at a reference point (the origin). In general, the element factor depends on the type of
current and its direction of flow while the space factor is a function of the current distribution along
the source.

The total field of the antenna is equal to the product of the element and space factors. This is
referred to as pattern multiplication for continuously distributed sources (see also Chapter 7), and it
can be written as

total field = (element factor) X (space factor) (4-59)

The pattern multiplication for continuous sources is analogous to the pattern multiplication of (6-5)
for discrete-element antennas (arrays).
For the current distribution of (4-56), (4-58a) can be written as

k] e_jkr 0 )
Ey ~jn 0 sin @ sin [k (i + Z’)] e+]kz’ cosd .t
drr s

+ /+l/2 sin [k(
0

Each one of the integrals in (4-60) can be integrated using

N |~

_ Z’)] e+jkz’ cosf .t } (4-60)

ax

/ e sin(fx +y) dx = ;;[a sin(fx + y) — fcos(fx + y)] (4-61)
aZ + p?
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where

a = +jkcos (4-61a)
p ==k (4-61b)
y=kl/2 (4-61c)

After some mathematical manipulations, (4-60) takes the form of

i cos<ﬂcose)—cos<ﬂ)
P o Lye 2 2
o =Jn

27 sin@ (4-62a)

In a similar manner, or by using the established relationship between the E, and H in the far
field as given by (3-58b) or (4-27), the total H, component can be written as

ik cos<ﬂcos9)—cos<ﬂ)
Hy~ B0 2 2 (4-62b)
=y T 2ar sin @ )

4.5.3 Power Density, Radiation Intensity, and Radiation Resistance

For the dipole, the average Poynting vector can be written as

E*
W, = —Re[E x H'] = —Re[agEg X 8,H}] = lRe [39E9 X 4, "]
ki kI T

A 1 , |10|2 cos(zcose)—cos<3>

W, =a,W, = ar2_n|E0| =4, 87272 sin @ (4-63)
and the radiation intensity as
kI kN T
|Io|2 cos (3 0059) — cos (3)
2

= = 4-64
U=r Wy 872 sin ( )

The normalized (to O dB) elevation power patterns, as given by (4-64) for I = A/4,7/2,3\/4, and
A are shown plotted in Figure 4.6. The current distribution of each is given by (4-56). The power
patterns for an infinitesimal dipole [ << A (U ~ sin? 0) is also included for comparison. As the length
of the antenna increases, the beam becomes narrower. Because of that, the directivity should also
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3-dB beamwidth = 90°
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3-dB beamwidth = 64°
3-dB beamwidth = 47.8°

Figure 4.6 Elevation plane amplitude patterns for a thin dipole with sinusoidal current distribution (/ =

A/50,M/4,0/2,30/4, N).

increase with length. It is found that the 3-dB beamwidth of each is equal to

RSN 3-dB beamwidth = 90°

[=)7/4 3-dB beamwidth = 87°

[=)7/2 3-dB beamwidth = 78° (4-65)
[=3\/4 3-dB beamwidth = 64°

=)\ 3-dB beamwidth = 47.8°

As the length of the dipole increases beyond one wavelength (/ > A), the number of lobes begin
to increase. The normalized power pattern for a dipole with [ = 1.25\ is shown in Figure 4.7. In



168 LINEAR WIRE ANTENNAS

e Normalized Field
Z Pattern (dB)

0

-5

(a) Three-dimensional
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Pattern (dB)

90° 90°

180°

(b) Two-dimensional

Figure4.7 Three- and two-dimensional amplitude patterns for a thin dipole of / = 1.25A and sinusoidal current
distribution.

Figure 4.7(a) the three-dimensional pattern in color is illustrated, while in Figure 4.7(b) the two-
dimensional (elevation pattern) in color is depicted. For the three-dimensional illustration, a 90°
angular section of the pattern has been omitted to illustrate the elevation plane directional pattern
variations. The current distribution for the dipoles with [ = A/4,7/2,\,3)/2, and 2, as given by
(4-56), is shown in Figure 4.8.
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Current distributions along the length of a linear wire antenna.

To find the total power radiated, the average Poynting vector of (4-63) is integrated over a sphere
of radius r. Thus

2z T
Py = éf W, - ds= /0 /0 8,W,, - a7 sin0 do dg
N

2 V.4
= / / W, 1% sin 0 d dg (4-66)
0 0

Using (4-63), we can write (4-66) as

2z b
P.g= /0 /0 W,,r* sin 0 db d¢

ki kI\1?
|10|2 /ﬂ [cos<§c0s0>—cos<3>]
0

= do 4-67
g iy sin @ ( )




170 LINEAR WIRE ANTENNAS

After some extensive mathematical manipulations, it can be shown that (4-67) reduces to

2
Py = n% {C + In(kl) — Ci(kD) + & sin(kD[S,(2k]) — 2,(kD)]
+ 1 cos(kD[C + In(kl/2) + C,(2k]) — 2C(kD)]} (4-68)

where C = 0.5772 (Euler’s constant) and C;(x) and S;(x) are the cosine and sine integrals (see
Appendix III) given by

o0 X
Ci(x) = — / %Y gy = / 8 oy (4-682)
.y o Y

o
S,(x) = / e (4-68b)
0

The derivation of (4-68) from (4-67) is assigned as a problem at the end of the chapter (Prob. 4.22).
C;(x) is related to C;,(x) by

C() = In(rx) = C;(x) = In(y) + In(x) = C;(x)
= 0.5772 + In(x) — C;(x) (4-69)

where

Ciplx) = / ) <1_ﬂ> dy (4-692)
0 y

C;(x), S;(x) and C;,(x) are tabulated in Appendix III.
The radiation resistance can be obtained using (4-18) and (4-68) and can be written as

2P g n
= |IO|2 = E{C-i_ In(kl) — C;(kD)

+ £ sin(kl) X [S;(2k]) — 28;(kD)] (4-70)

+ 1 cos(kl) x [C + In(kl/2) + C;(2kI) = 2C,(kD)]}

Shown in Figure 4.9(a) is a plot of R,. as a function of / (in wavelengths) when the antenna is radiating
into free-space (n ~ 120x).

The imaginary part of the impedance cannot be derived using the same method as the real part
because, as was explained in Section 4.2.2, the integration over a closed sphere in (4-13) does not
capture the imaginary power contributed by the transverse component W, of the power density.
Therefore, the EMF method is used in Chapter 8 as an alternative approach. Using the EMF method,
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(b) Reactance (to current maximum)

Radiation resistance and reactance, input resistance and directivity of a thin dipole with sinusoidal
current distribution.

the imaginary part of the impedance, relative to the current maximum, is given by (8-57b) or

X, = 41 {ZSi(kl) + cos(kD[2S,(kl) — S;(2ki)]
T

2
— sin(kl) [2Ci(kl) — C,(2kl) = C; <2"l" )] } (4-70a)

An approximate form of (4-57b) for small dipoles is given by (8-59).
Ideally, the radius of the wire does not affect the input resistance, as is indicated by (4-70). How-
ever, in practice, it does, although the wire radius is not as significant as it is for the input reactance.
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To examine the effect the radius has on the values of the reactance, its values, as given by (4-70a),
are plotted in Figure 4.9(b) for a = 1075, 10~*), 1073), and 10~2A. The overall length of the wire is
taken to be 0 </ < 3\. The same ones are displayed in Figure 8.17, and they are derived in Chapter 8
based on the EMF method. It is apparent that the reactance can be reduced to zero provided that the
overall length is slightly less than nA/2, n =1, 3, ..., or slightly greater than nA/2,n = 2,4, .... This
is often done, in practice, for the [ ~ A/2 because the input resistance is close to 50 ohms, an almost
ideal match for the widely used 50-ohm lines. How much smaller than A/2 should it be reduced
depends on the radius of the wire; the thicker the radius, the more there needs to be cut off. Typ-
ical dipole lengths for the first resonance range around A ~ (0.46-0.48)A. For very small radii, the
reactance for / = A/2 equals 42.5 ohms.

4.5.4 Directivity

As was illustrated in Figure 4.6, the radiation pattern of a dipole becomes more directional as

its length increases. When the overall length is greater than one wavelength, the number of lobes

increases and the antenna loses its directional properties. The parameter that is used as a “figure of

merit” for the directional properties of the antenna is the directivity which was defined in Section 2.6.
The directivity was defined mathematically by (2-22), or

F(0, )| max
Dy = 4n——— (4-71)
/ / F(0,¢)sinf db d¢
0 0
where F(0, ¢) is related to the radiation intensity U by (2-19), or
U = ByF(.¢) 4-72)
From (4-64), the dipole antenna of length / has
kl ki T
cos (5 cos 9) — Ccos <E>
F(0,¢) =F(0) = - (4-73)
sin 6
and
By = n—'lOlz (4-73a)
812
Because the pattern is not a function of ¢, (4-71) reduces to
2F(0
Dy= ——— Olan (4-74)
/ F(0)sin@ do
0
Equation (4-74) can be written, using (4-67), (4-68), and (4-73), as
2F(0
D, = —( lmax (4-75)

0
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where

0 = {C +In(kl) — C(kl) + 5 sin(kD)[S,(2k]) — 28,(kD)]

+ % cos(kD)[C + In(kl/2) + C;(2kl) — 2C;(kD)]} (4-75a)

The maximum value of F (@) varies and depends upon the length of the dipole.

Values of the directivity, as given by (4-75) and (4-75a), have been obtained for 0 < / < 3\ and
are shown plotted in Figure 4.9. The corresponding values of the maximum effective aperture are
related to the directivity by

xZ

em — 4r 0

A (4-76)

4.5.5 Input Resistance

In Section 2.13 the input impedance was defined as “the ratio of the voltage to current at a pair of
terminals or the ratio of the appropriate components of the electric to magnetic fields at a point.”
The real part of the input impedance was defined as the input resistance which for a lossless antenna
reduces to the radiation resistance, a result of the radiation of real power.

In Section 4.2.2, the radiation resistance of an infinitesimal dipole was derived using the definition
of (4-18). The radiation resistance of a dipole of length / with sinusoidal current distribution, of the
form given by (4-56), is expressed by (4-70). By this definition, the radiation resistance is referred
to the maximum current which for some lengths (I = A/4,3A/4, ), etc.) does not occur at the input
terminals of the antenna (see Figure 4.8). To refer the radiation resistance to the input terminals of
the antenna, the antenna itself is first assumed to be lossless (R; = 0). Then the power at the input
terminals is equated to the power at the current maximum.

Referring to Figure 4.10, we can write

I |2 I,|?
| 1;' Rm = %Rr 4-77)
or
712
0
R, = [—] R, (4-77a)
Iin
where

R;, = radiation resistance at input (feed) terminals
R, = radiation resistance at current maximum Eq. (4-70)
Iy = current maximum

I, = current at input terminals

For a dipole of length /, the current at the input terminals (Z;,) is related to the current maximum
(Iy) referring to Figure 4.10, by

I, = Iysin (%) (4-78)
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Figure 4.10  Current distribution of a linear wire antenna when current maximum does not occur at the
input terminals.

Thus the input radiation resistance of (4-77a) can be written as

Rin = m (4-79)

Values of R;, for 0 < [ < 3\ are shown in Figure 4.9(a).

To compute the radiation resistance (in ohms), directivity (dimensionless and in dB), and input
resistance (in ohms) for a dipole of length I, a MATLAB and FORTRAN computer program has
been developed. The program is based on the definitions of each as given by (4-70), (4-71), and
(4-79). The radiated power P4 is computed by numerically integrating (over a closed sphere) the
radiation intensity of (4-72)—(4-73a). The program, both in MATLAB and FORTRAN, is included
in the publisher’s website for this book. The length of the dipole (in wavelengths) must be inserted
as an input.

When the overall length of the antenna is a multiple of A (i.e., [ = nA,n = 1,2,3, ...), it is apparent
from (4-56) and from Figure 4.8 that I;, = 0. That is,

=0 =0 (4-80)

I, = Iysin [k <i + z’)]
2 I=n\,n=0,12,...

which indicates that the radiation resistance at the input terminals, as given by (4-77a) or (4-79) is
infinite. In practice this is not the case because the current distribution does not follow an exact sinu-
soidal distribution, especially at the feed point. It has, however, very high values (see Figure 4.11).
Two of the primary factors which contribute to the nonsinusoidal current distribution on an actual
wire antenna are the nonzero radius of the wire and finite gap spacing at the terminals.

The radiation resistance and input resistance, as predicted, respectively, by (4-70) and (4-79),
are based on the ideal current distribution of (4-56) and do not account for the finite radius of the
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wire or the gap spacing at the feed. Although the radius of the wire does not strongly influence the
resistances, the gap spacing at the feed does play a significant role especially when the current at
and near the feed point is small.

4.5.6 Finite Feed Gap

To analytically account for a nonzero current at the feed point for antennas with a finite gap at the
terminals, Schelkunoff and Friis [6] have changed the current of (4-56) by including a quadrature
term in the distribution. The additional term is inserted to take into account the effects of radiation
on the antenna current distribution. In other words, once the antenna is excited by the “ideal” current
distribution of (4-56), electric and magnetic fields are generated which in turn disturb the “ideal”
current distribution. This reaction is included by modifying (4-56) to

a, {IO sin [k (é —Z’)] +jply [cos(kz’) — cos <§l>] },
0<7<1)2 .
2

a, {IO sin [k (é + z’)] +jpl, [cos(kz’) — cos (
-1/2<7 <0
where p is a coefficient that is dependent upon the overall length of the antenna and the gap spacing
at the terminals. The values of p become smaller as the radius of the wire and the gap decrease.
When [ =A/2,

LGy, )= (4-81)

\S)

L.y, 2) =aly(1 +jp)cos(kz’) 0 < || <h/4 (4-82)
and for [ = A

a_ly{sin(kz') + jp[1 + cos(kz')]} 0<7 <)\2

R . . (4-83)
a_ly{—sin(kz’) + jp[l + cos(kz)]} —-A/2<z' <0

L.y, )= {

Thus for / = /2 the shape of the current is not changed while for / = A it is modified by the second
term which is more dominant for small values of z’. The current distribution based on (4-83) is
displayed in Figure 4.11.

The variations of the current distribution and impedances, especially of wire-type antennas, as
a function of the radius of the wire and feed gap spacing can be easily taken into account by
using advanced computational methods and numerical techniques, especially Integral Equations and
Moment Method [7]—[12], which are introduced in Chapter 8.

To illustrate the point, the current distribution of an / = A/2 and / = A dipole has been computed
using an integral equation formulation with a moment method numerical solution, and it is shown
in Figure 8.13(b) where it is compared with the ideal distribution of (4-56) and other available data.
For the moment method solution, a gap at the feed has been inserted. As expected and illustrated
in Figure 8.13(b), the current distribution for the / = A/2 dipole based on (4-56) is not that differ-
ent from that based on the moment method. This is also illustrated by (4-82). Therefore the input
resistance based on these two methods will not be that different. However, for the [ = A dipole, the
current distribution based on (4-56) is quite different, especially at and near the feed point, compared
to that based on the moment method, as shown in Figure 8.13(b). This is expected since the current
distribution based on the ideal current distribution is zero at the feed point; for practical antennas
it is very small. Therefore the gap at the feed plays an important role on the current distribution at
and near the feed point. In turn, the values of the input resistance based on the two methods will be
quite different, since there is a significant difference in the current between the two methods. This is
discussed further in Chapter 8.
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Figure 4.11 Typical current distribution for a / = A dipole with finite gap based on (4-83).

4.6 HALF-WAVELENGTH DIPOLE

One of the most commonly used antennas is the half-wavelength (I = A/2) dipole. Because its radi-
ation resistance is 73 ohms, which is very near the 50-ohm or 75-ohm characteristic impedances of
some transmission lines, its matching to the line is simplified especially at resonance. Because of its
wide acceptance in practice, we will examine in a little more detail its radiation characteristics.

The electric and magnetic field components of a half-wavelength dipole can be obtained from
(4-62a) and (4-62b) by letting [ = A/2. Doing this, they reduce to

[.e—jkr | €08 <£ cos 9)
) 2

2rr sin @ (4-84)
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T
—ikr | cOS —COSH)

o~ e il (2
¢ =J

2 sin @ (4-85)

In turn, the time-average power density and radiation intensity can be written, respectively, as

2

T
z 9)
— s °°S(2C°S LR 56
v 87212 sin @ T 8a2r2
and
2
2 cos(zcose) I, |2
) |I()| 2 - 0 . 3
U=r"W, = g ~ 11—”2 sin” 0 (4-87)

whose two-dimensional pattern is shown plotted in Figure 4.6 while the three-dimensional pattern
is depicted in Figure 4.12a. For the three-dimensional pattern of Figure 4.12a, a 90° angular sector
has been removed to illustrate the figure-eight elevation plane pattern variations.

The radiation intensity of the A/2 dipole can be approximated by a sine function with integer
exponent of three, as represented in (4-87); thatis, U ~ sin36. Actually, noninteger exponent values,
slightly less than three, match the exact pattern even better. This is indicated in Figure 4.12(b) where
a sine function, with exponent values of 2.6 and 2.8, is used to plot the normalized pattern of (4-87)
and to compare it to that of sin6. It is apparent that a noninteger exponent of nearly 2.6 for the sine
function is a better match to the exact pattern.

The total power radiated can be obtained as a special case of (4-67), or

2 (
b |IO|2/;;COS <2c059)
0

= 4-
rad = M5 Sind do (4-88)
which when integrated reduces, as a special case of (4-68), to
|IO|2 2z /] —Ccosy |10|2
Pog= r/g /0 T dy = ngcm(Zn) (4-89)

By the definition of C;,(x), as given by (4-69), C;,(2x) is equal to

C,,2r) =0.5772 + In(27) — C;(2w) = 0.5772 + 1.838 — (—=0.02) ~ 2.435 (4-90)

where C;(2r) is obtained from the tables in Appendix III.
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Figure 4.12  Three- and two-dimensional patterns of a A/2 dipole (a) three-dimensional pattern of a A/2
dipole. (b) comparison of two-dimensional patterns for a /2 dipole.
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Using (4-87), (4-89), and (4-90), the maximum directivity of the half-wavelength dipole
reduces to

U Ulp=r/2 4 4
D, =4rn max — 47 = = ~ 1.643 4-91
0 Praa Poa  Cpn) — 2.435 -9
The corresponding maximum effective area is equal to
Ay =2y = 2 (1643) = 0.1322
= —Dy,=—(1. ~ 0. 4-92
em = gg 0 477( ) (4-92)

and the radiation resistance, for a free-space medium ( ~ 120x), is given by

_ 2Prald _ n
T2 4x

C,,2m) =30(2.435) ~ 73 (4-93)

The radiation resistance of (4-93) is also the radiation resistance at the input terminals (input
resistance) since the current maximum for a dipole of / = A/2 occurs at the input terminals (see
Figure 4.8). As it will be shown in Chapter 8, the imaginary part (reactance) associated with the
input impedance of a dipole is a function of its length (for [ = A/2, it is equal to j42.5). Thus the
total input impedance for / = A/2 is equal to

Z, =73 +j42.5 (4-93a)

To reduce the imaginary part of the input impedance to zero, the antenna is matched or reduced
in length until the reactance vanishes. The latter is most commonly used in practice for half-
wavelength dipoles.

Depending on the radius of the wire, the length of the dipole for first resonance is about / = 0.47A
to 0.48A; the thinner the wire, the closer the length is to 0.48\. Thus, for thicker wires, a larger
segment of the wire has to be removed from A/2 to achieve resonance. The variations of the
reactance as a function of the dipole length /, for different wire radii, are displayed in Figures 4.9(b)
and 8.17. A summary of the dipole directivity, gain and realized gain are listed in Table 4.2.

4.7 LINEAR ELEMENTS NEAR OR ON INFINITE PERFECT ELECTRIC
CONDUCTORS (PEC), PERFECT MAGNETIC CONDUCTORS (PMC) AND
ELECTROMAGNETIC BAND-GAP (EBG) SURFACES

Thus far we have considered the radiation characteristics of antennas radiating into an unbounded
medium. The presence of an obstacle, especially when it is near the radiating element, can signif-
icantly alter the overall radiation properties of the antenna system. In practice the most common
obstacle that is always present, even in the absence of anything else, is the ground. Any energy from
the radiating element directed toward the ground undergoes a reflection. The amount of reflected
energy and its direction are controlled by the geometry and constitutive parameters of the ground.
In general, the ground is a lossy medium (o # 0) whose effective conductivity increases with fre-
quency. Therefore it should be expected to act as a very good conductor above a certain frequency,
depending primarily upon its composition and moisture content. To simplify the analysis, it will first
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TABLE 4.2 Summary of Dipole Directivity, Gain and Realized
Gain (Resonant X, = 0; f = 100 MHz; 6 = 5.7 x 107 S/m;
Z, =505 =3%x10"%))

1=1/50 1=2/10 1=23/2 I=2

Ry  0.0279 0.2792 0.698 1.3692

R, 0.0279 0.1396 0.349 0.6981

R. 03158 1.9739 73 199

R, 03158 1.9739 73 0

e, 09188 0.9339 0.9952 0.9965
(-0.368 dB)  (—=0.296 dB)  (~0.021dB) (-0.015 dB)

D, 15 1.5 1.6409 2411
(1.761dB)  (1.761dB)  (2.151dB)  (3.822dB)

G, 13782 1.4009 1.6331 2.4026
(1393dB)  (1.464dB)  (2.13dB) (3.807 dB)

r -0.9863 ~0.9189 0.18929 1

e, 00271 0.1556 0.9642 0
(-15.67dB) (-8.08dB)  (=0.158dB) (—oo dB)

G,, 00374 0.2181 1.5746 0

(=14.27dB) (-6.613dB) (1.972dB) (=00 dB)

be assumed that the ground is a perfect electric conductor, flat, and infinite in extent. The effects of
finite conductivity and earth curvature will be incorporated later. The same procedure can also be
used to investigate the characteristics of any radiating element near any other infinite, flat, perfect
electric conductor. Although infinite structures are not realistic, the developed procedures can be
used to simulate very large (electrically) obstacles. The effects that finite dimensions have on the
radiation properties of a radiating element can be conveniently accounted for by the use of the Geo-
metrical Theory of Diffraction (Chapter 12, Section 12.10) and/or the Moment Method (Chapter 8,
Section 8.4).

Magnetic conductors are nonphysical, meaning they do not exist in nature. However, in recent
years, techniques have been developed to synthesize and fabricate materials which exhibit interest-
ing, attractive, and exciting electromagnetic properties. These properties have captured the attention
and imagination of leading engineers and scientists in academia, industry, and government. When
such materials are further integrated with electromagnetic devices and interact with electromagnetic
waves, they exhibit some unique and intriguing characteristics and phenomena. For example, they
can be used to control, advance, and optimize the performance of antennas, microwave components
and circuits, transmission lines, scatterers, and optical devices. A brief introduction to engineered
synthesized magnetic surfaces, especially as used as ground planes, follows in Section 4.7.1.

4.7.1 Ground Planes: Electric and Magnetic

Surfaces that exhibit ideal electric conducting properties, and accordingly satisfy the electromag-
netic boundary conditions such that the tangential components of the electric field vanish over their
surface, are usually referred to as Perfect Electric Conductors (PEC). Such surfaces exist in nature
and metals, with electric conductivities on the order of 10’108, are good approximations for most
electrical characteristics, especially in their utilization as ground planes for antenna applications.
The conductivity can be increased even further by applying superconductivity technology [7].

In comparison, materials that exhibit ideal magnetic conductivities such that the tangential com-
ponents of the magnetic field vanish over their surface, although used previously as equivalents in
electromagnetic boundary value problems, do not exist in nature and are nonphysical [13]. Yet, in
recent years, technologies have been developed to synthesize and fabricate materials which exhibit
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interesting, attractive and exciting electromagnetic properties that have captured the attention and
imagination of leading engineers and scientists from academia, industry and government. When such
materials are integrated with electromagnetic devices and interact with electromagnetic waves, they
exibit some unique and intriguing characteristics and phenomena which can be used, for example,
to control, advance, and optimize the performance of antennas, microwave components and circuits,
transmission lines, scatterers, and optical devices. Examples as to how the amplitude patterns of a
monopole and an aperture are influenced and controlled by such artificially synthesized surfaces are
illustrated in [7].

In general, materials that do not exist in nature, but can be artificially synthesized, are referred to
as metamaterials (beyond materials; meta in Greek for beyond/after) [15]. Such synthesized surfaces
behave as nearly magnetic conductors only over a limited frequency range, and this limited range is
often referred to as band-gap, although technologies are being pursued to advance and extend their
frequency range [16]-[17]. There have been many other designations for such materials as well:

AMC (artificial magnetic conductors)

AIS (artificial impedance surfaces)

EES (engineered electromagnetic surfaces)
PBG (photonic band-gap)
EBG (electromagnetic band-gap)

HIS (high impedance surfaces)

There are too many different types of synthesized magnetic conductors to list them all here; a number
of them are mentioned in [7], [13]-[23]. An extensive discussion and full list can be found in [7].

A surface can be synthesized to exhibit nearly magnetic properties by modifying its geometry
and/or adding other layers, so that the surface waves and/or the phase of the reflection coefficient of
the modified surface can be controlled. Although the magnitude of the reflection coefficient will also
be affected, it is the phase that primarily has the largest impact, especially when the surface is used
as a ground plane. While an ideal PMC surface introduces, through its image, a zero-phase shift in
the reflected field, in contrast to a PEC, which presents a 180° phase shift, the reflection phase of an
EBG surface can, in general, vary from —180° to +180°, which makes the EBG more versatile and
unique [7].

One of the first and most widely utilized PMC surfaces is that shown in Figure 4.13. This surface
consists of an array of periodic patches of different shapes, in this case, squares, placed above a very
thin substrate (which can be air) and connected to the ground plane by posts through vias, if an actual
substrate is utilized. The height of the substrate is usually less than a tenth of a wavelength (2 <A/10).
The vias are necessary to suppress surface waves within the substrate. This surface structure is also
referred to as EBG and PBG. It is a practical form of engineered textured surfaces or metamaterials.
Because of the directional characteristics of EBG/PBG structures, integration of antenna elements
with such structures can have some unique characteristics. A semi-empirical model of the mushroom
EBG surface in Figure 4.13 was developed in [21], [22]; also reported in [7]. While EBG surfaces
exhibit similar characteristics to PMCs when radiating elements are mounted on them, they have
the additional ability to suppress surface waves of low-profile antenna designs, such as microstrip
arrays. The surface waves introduced in microstrip arrays primarily travel within the substrate and
are instrumental in developing coupling between the array elements. This can limit the beam scan-
ning capabilities of the microstrip arrays; ultimately, surface waves and coupling may even lead to
scan blindness (as discussed in Chapter 14, Section 14.8). When a plane wave is normally incident
upon a surface, such as that of Figure 4.13 with a surface impedance Z, the +90° to —90° phase vari-
ation is also evident when the magnitude of the surface impedance exceeds the free-space intrinsic
impedance 7 [21, 22]. An EBG surface that does not include the vias does not suppress the surface
waves, even though its reflection phase changes between +180° and —180°.
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Figure 4.13  Geometry of PMC textured surface of square patches [7]. (a) Perspective view. (b) Top view.
(c) Side view.

The performance of the mushroom PMC surface is verified based on the specified and obtained
geometrical dimensions. The plane wave normal incidence reflection phase variations of S;; of the
mushroom textured surface of square patches of Figure 4.13, between +90° and —90°, are shown in
Figure 4.14 where they are compared with the results based on the design equations of Section 8.8.4
of [7]. Very good agreement is apparent between the two. The simulated data indicate a bandwidth of
3.9 GHz (f;= 10.35 GHz and f}, = 14.25 GHz), compared to the specified one of 4 GHz (f; = 10 GHz
and f;, = 14 GHz), a center frequency of 12.15 GHz (compared to 12 GHz), and a fractional bandwidth
of 0.321 (compared to 0.333). Overall, the performance indicates the design to be very favorable.

4.7.2 Image Theory

To analyze the performance of an antenna near an infinite plane conductor, virtual sources (images)
will be introduced to account for the reflections. As the name implies, these are not real sources but
imaginary ones, which when combined with the real sources, form an equivalent system. For analysis
purposes only, the equivalent system gives the same radiated field on and above the conductor as
the actual system itself. Below the conductor, the equivalent system does not give the correct field.
However, in this region the field is zero and there is no need for the equivalent.

To begin the discussion, let us assume that a vertical electric dipole is placed a distance & above an
infinite, flat, perfect electric conductor as shown in Figure 4.15(a). The arrow indicates the polarity
of the source. Energy from the actual source is radiated in all directions in a manner determined by
its unbounded medium directional properties. For an observation point P, there is a direct wave.
In addition, a wave from the actual source radiated toward point R; of the interface undergoes a
reflection. The direction is determined by the law of reflection (0{ = ¢}) which assures that the energy
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Figure 4.14  Phase of reflection coefficient S|, of PMC textured surface with square patches simulated using
HFSS and design equations [7].

in homogeneous media travels in straight lines along the shortest paths. This wave will pass through
the observation point P;. By extending its actual path below the interface, it will seem to originate
from a virtual source positioned a distance /& below the boundary. For another observation point P,
the point of reflection is R,, but the virtual source is the same as before. The same is concluded for
all other observation points above the interface.

The amount of reflection is generally determined by the respective constitutive parameters of the
media below and above the interface. For a perfect electric conductor below the interface, the incident
wave is completely reflected and the field below the boundary is zero. According to the boundary
conditions, the tangential components of the electric field must vanish at all points along the interface.
Thus for an incident electric field with vertical polarization shown by the arrows, the polarization of
the reflected waves must be as indicated in the figure to satisfy the boundary conditions. To excite
the polarization of the reflected waves, the virtual source must also be vertical and with a polarity in
the same direction as that of the actual source (thus a reflection coefficient of +1).

Another orientation of the source will be to have the radiating element in a horizontal position, as
shown in Figure 4.27. Following a procedure similar to that of the vertical dipole, the virtual source
(image) is also placed a distance i below the interface but with a 180° polarity difference relative to
the actual source (thus a reflection coefficient of —1).

In addition to electric sources, nonphysical equivalent “magnetic” sources and magnetic conduc-
tors have been introduced to aid in the analyses of electromagnetic boundary-value problems. Fig-
ure 4.16(a) displays the sources and their images for an electric plane conductor. The single arrow
indicates an electric element and the double a magnetic one. The direction of the arrow identifies
the polarity. Since many problems can be solved using duality, Figure 4.16(b) illustrates the sources
and their images when the obstacle is an infinite, flat, perfect “magnetic” conductor.

4.7.3 Vertical Electric Dipole

The analysis procedure for vertical and horizontal electric and magnetic elements near infinite elec-
tric and magnetic plane conductors, using image theory,was illustrated graphically in the previous
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Vertical electric dipole above an infinite, flat, perfect electric conductor.

section. Based on the graphical model of Figure 4.15, the mathematical expressions for the fields
of a vertical linear element near a perfect electric conductor will now be developed. For simplicity,
only far-field observations will be considered.

Referring to the geometry of Figure 4.15(a), the far-zone direct component of the electric field of

the infinitesimal dipole of length /, constant current /,, and observation point P is given according

to (4-26a) by

_ klyle Rt
E@ = Jp——s1n 91 (4_94)

4rry
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The reflected component can be accounted for by the introduction of the virtual source (image), as
shown in Figure 4.14(a), and it can be written as

o klleTRn
E:‘9 =JRV77W s 92 (4-95)
or
. klglet
E, = m—4ﬂr2 sin 0, (4-95a)

since the reflection coefficient R, is equal to unity.

The total field above the interface (z > 0) is equal to the sum of the direct and reflected components
as given by (4-94) and (4-95a). Since a field cannot exist inside a perfect electric conductor, it is equal
to zero below the interface. To simplify the expression for the total electric field, it is referred to the
origin of the coordinate system (z = 0).
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In general, we can write that
ri = [r* + h? = 2rhcos 6]/ (4-96a)
ry = [2 + h? = 2rhcos(x — 6)]'/? (4-96b)
For far-field observations (r > h), (4-96a) and (4-96b) reduce using the binomial expansion to
ry~r—hcos# (4-97a)
ry~r+hcosf (4-97b)

As shown in Figure 4.17(b), geometrically (4-97a) and (4-97b) represent parallel lines. Since the
amplitude variations are not as critical

ry =~ ry ~r for amplitude variations (4-98)

Using (4-97a)—(4-98), the sum of (4-94) and (4-95a) can be written as

E, o jn T o coskcos )] 230
0 =N - sinf[2 cos(khcos )] z > (4-99)

E0=0 Z<O

It is evident that the total electric field is equal to the product of the field of a single source positioned
symmetrically about the origin and a factor [within the brackets in (4-99)] which is a function of the
antenna height (/) and the observation angle (6). This is referred to as pattern multiplication and the
factor is known as the array factor [see also (6-5)]. This will be developed and discussed in more
detail and for more complex configurations in Chapter 6.

The shape and amplitude of the field is not only controlled by the field of the single element but
also by the positioning of the element relative to the ground. To examine the field variations as a
function of the height A, the normalized (to 0 dB) power patterns for 4 = 0,A/8,\/4,3\/8, /2, and
A have been plotted in Figure 4.18. Because of symmetry, only half of each pattern is shown. For
h > L/4 more minor lobes, in addition to the major ones, are formed. As A attains values greater
than 2, an even greater number of minor lobes is introduced. These are shown in Figure 4.19 for
h = 2) and 5A. The introduction of the additional lobes in Figure 4.19 is usually called scalloping.
In general, the total number of lobes is equal to the integer that is closest to

number of lobes =~ % +1 (4-100)

Since the total field of the antenna system is different from that of a single element, the directivity
and radiation resistance are also different. To derive expressions for them, we first find the total
radiated power over the upper hemisphere of radius r using

1 2r  px/2
Prad=#wav' ds = Z o /0 |E0|2}’2 sinf db d¢
S

T

/2
=—/ |Eg|%1? sin 0 d6 (4-101)
nJo
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Vertical electric dipole above infinite perfect electric conductor.

which simplifies, with the aid of (4-99), to

Il

A

2 .
1 cos(2kh)  sin(2kh)
[3_ akhE T 2k (4-102)

Pradznn

As kh — oo the radiated power, as given by (4-102), is equal to that of an isolated element. How-
ever, for kh — 0, it can be shown by expanding the sine and cosine functions into series that the
power is twice that of an isolated element. Using (4-99), the radiation intensity can be written as

2

Il
U=rP W, =7 (21—”|E9|2> - g | sin? 0 cos?(khcos 0) (4-103)
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Elevation plane amplitude patterns of a vertical infinitesimal electric dipole for different heights
above an infinite perfect electric conductor.

The maximum value of (4-103) occurs at # = z/2 and is given, excluding kh — oo, by

Il |?

A

n
Unax = U|0=n/2 = D)

(4-103a)

Relative power
(dB down)

90°

— h=2LA — h=5\

Elevation plane amplitude patterns of a vertical infinitesimal electric dipole for heights of 2\ and
5\ above an infinite perfect electric conductor.
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Figure 4.20  Elevation plane amplitude pattern of a vertical infinitesimal electric dipole at a height of 0.4585A
above an infinite perfect electric conductor.

which is four times greater than that of an isolated element. With (4-102) and (4-103a), the directivity
can be written as

4z,
Dy = 2 (4-104)
Prag 1 _ cos(2kh)  sin(2kh)

3 Qkh? | (2kh)?

whose value for kh = 0 is 3. The maximum value occurs when kh = 2.881 (h = 0.4585)), and it is
equal to 6.566 which is greater than four times that of an isolated element (1.5). The pattern for
h = 0.4585) is shown plotted in Figure 4.20 while the directivity, as given by (4-104), is displayed
in Figure 4.21 for 0 < h < 5).

Using (4-102), the radiation resistance can be written as

A

_ 2P . (1)2 1 cos(2kh) 4 sin(2kh) (4-105)
STAE 3 (Qkh)?  (2kh)3

whose value for kh — oo is the same and for kkh = 0 is twice that of the isolated element as
given by (4-19). When kh = 0, the value of R, as given by (4-105) is only one-half the value
of an I’ = 2[ isolated element according to (4-19). The radiation resistance, as given by (4-105),
is plotted in Figure 4.19 for 0 < h < 5\ when [ =2/50 and the element is radiating into free-
space (1 ~ 120x). It can be compared to the value of R, = 0.316 ohms for the isolated element of
Example 4.1.

In practice, a wide use has been made of a quarter-wavelength monopole (I = A/4) mounted
above a ground plane, and fed by a coaxial line, as shown in Figure 4.22(a). For analysis pur-
poses, a A/4 image is introduced and it forms the A/2 equivalent of Figure 4.22(b). It should be
emphasized that the A/2 equivalent of Figure 4.22(b) gives the correct field values for the actual
system of Figure 4.22(a) only above the interface (z > 0,0 < § < x/2). Thus, the far-zone electric
and magnetic fields for the A /4 monopole above the ground plane are given, respectively, by (4-84)
and (4-85).
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Figure 4.23 Input impedance of a vertical A/2 dipole above a flat lossy electric conducting surface.

From the discussions of the resistance of an infinitesimal dipole above a ground plane for ki = 0,
it follows that the input impedance of a A/4 monopole above a ground plane is equal to one-half
that of an isolated A/2 dipole. Thus, referred to the current maximum, the input impedance Z;, is
given by

Z,,, (monopole) = %Zim (dipole) = %[73 +j42.5] = 36.5+21.25 (4-106)

where 73 + j42.5 is the input impedance (and also the impedance referred to the current maximum)
of a A/2 dipole as given by (4-93a).

The same procedure can be followed for any other length. The input impedance Z;,, = R;,, + jX,,
(referred to the current maximum) of a vertical A /2 dipole placed near a flat lossy electric conductor,
as a function of height above the ground plane, is plotted in Figure 4.23, for 0 < & < A. Conductivity
values considered were 1072, 107!, 1, 10 S/m, and infinity (PEC). It is apparent that the conductivity
does not strongly influence the impedance values. The conductivity values used are representative of
dry to wet earth. It is observed that the values of the resistance and reactance approach, as the height
increases, the corresponding ones of the isolated element (73 ohms for the resistance and 42.5 ohms
for the reactance).

4.7.4 Approximate Formulas for Rapid Calculations and Design

Although the input resistance of a dipole of any length can be computed using (4-70) and (4-79),
while that of the corresponding monopole using (4-106), very good answers can be obtained using
simpler but approximate expressions. Defining G as

G = kl/2 for dipole (4-107a)
G = kl for monopole (4-107b)
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where [ is the total length of each respective element, it has been shown that the input resistance of

the dipole and monopole can be computed approximately using [13]

0<G<n/d

(maximum input resistance of dipole is less than 12.337 ohms)
R;, (dipole) = 20G> 0<l<)\/4
R;, (monopole) = 106> 0 <1< )/8

r/4<G<x/2
(maximum input resistance of dipole is less than 76.383 ohms)
R;, (dipole) = 24.7G*> M4 <I<)\/2

R;, (monopole) = 12.35G> \/8 <1< \/4
r/2<G<?2
(maximum input resistance of dipole is less than 200.53 ohms)
R, (dipole) = 11.14G*!7  1/2 <1< 0.6366)
R;, (monopole) = 5.57G*!7  \/4 <1< 0.3183)

(4-108a)
(4-108b)

(4-109a)
(4-109b)

(4-110a)
(4-110b)

Besides being much simpler in form, these formulas are much more convenient in design (syn-
thesis) problems where the input resistance is given and it is desired to determine the length of the
element. These formulas can be verified by plotting the actual resistance versus length on a log—log
scale and observe the slope of the line [24]. For example, the slope of the line for values of G up to

about 7 /4 ~ 0.75 is 2.

Example 4.4
Solution: Using (4-109a)
50 = 24.7G*3
or
G =1.3259 =kl/2
Therefore

[=0.422)\

value of 50 ohms. To obtain 50 ohms using (4-70) and (4-79), [ = 0.4363\.

Determine the length of a dipole whose input resistance is 50 ohms. Verify the answer.

Using (4-70) and (4-79) R;, for 0.422) is 45.816 ohms, which closely agrees with the desired

4.7.5 Mobile Communication Devices and Antennas for Mobile Communication

Systems

The cellular era officially began in March 1982 when the FCC (Federal Communication Commis-
sion) gave communication carriers the official go-ahead to develop cellular technology. On March
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6, 1983, Motorola officially unveiled the DynaTAC 8000X cellular telephone, which then weighted
around 1.75 pounds (0.79 kg) and was nearly 13 inches (33 cm) long, and the race began. Since then,
there has been an explosion in the advancement, miniaturization, and utilization of wireless commu-
nication devices, especially cell phones, smartphones, tablets and pads. While in 1998 there were
worldwide about 200 million of cellular handset units sold, the figure grew to nearly 750 million
units in 2006 and to nearly 1,000 million in 2013; over 1 billion in 2015. Many companies played
key roles in this evolution; most prominent among them were Motorola, Qualcomm, Nokia, Eric-
sson, Apple, Samsung, LG, Huawei, and Lenovo. During this period, these devices provided vast
services in the exchange of information, via emails, text messaging, news, stock quotes, weather,
traveling maps, GPS, TV, search engines, just to name a few. Antenna technology, the “eyes and
ears” of wireless communication systems, led this evolution, starting from the design and utiliza-
tion of external radiating elements (primarily monopole and dipole type), such as in the DynaTAC,
to embedded elements (primarily planar elements), such as microstrip, IFA, and PIFA employed in
almost all of today’s smartphones, tablets, pads, and other mobile units. In this chapter we introduce
the basic radiation characteristics of dipoles and monopoles while those of planar elements, such as
microstrips and PIFAs, are discussed in Chapter 14.

The dipole and monopole are two of the most widely used antennas for wireless mobile com-
munication systems [25]—[29]. An array of dipole elements is extensively used as an antenna at the
base station of a land mobile system while the monopole, because of its broadband characteristics
and simple construction, is perhaps the most common antenna element for portable equipment, such
as cellular telephones, cordless telephones, automobiles, trains, etc. The radiation efficiency and
gain characteristics of both of these elements are strongly influenced by their electrical length which
is related to the frequency of operation. In a handheld unit, such as a cellular telephone, the posi-
tion of the monopole element on the unit influences the pattern while it does not strongly affect the
input impedance and resonant frequency. In addition to its use in mobile communication systems,
the quarter-wavelength monopole is very popular in many other applications. An alternative to the
monopole for the handheld unit is the loop, which is discussed in Chapter 5. Other elements include
the inverted F, planar inverted F antenna (PIFA), microstrip (patch), spiral, and others [25]—[29].

The variation of the input impedance, real and imaginary parts, of a vertical monopole
antenna mounted on an experimental unit, simulating a cellular telephone, are shown in Fig-
ure 4.24(a,b) [28]—-[29]. It is apparent that the first resonance, around 1,000 MHz, is of the series
type with slowly varying values of impedance versus frequency, and of desirable magnitude, for
practical implementation. For frequencies below the first resonance, the impedance is capacitive
(imaginary part is negative), as is typical of linear elements of small lengths (see Figure 4.9); above
the first resonance, the impedance is inductive (positive imaginary part). The second resonance,
around 1,500 MHz, is of the parallel type (antiresonance) with large and rapid changes in the val-
ues of the impedance. These values and variation of impedance are usually undesirable for practical
implementation. The order of the types of resonance (series vs. parallel) can be interchanged by
choosing another element, such as a loop, as illustrated in Chapter 5, Section 5.8, Figure 5.20 [29].
The radiation amplitude patterns are those of a typical dipole with intensity in the lower hemisphere.

Examples of monopole type antennas used in cellular and cordless telephones, walkie-talkies, and
CB radios are shown in Figure 4.25. The monopoles used in these units are either stationary, as it
was in the first cell phone (Motorola DynaTAC) introduced in 1982-1984, or retractable/telescopic.
The length of the retractable/telescopic monopole, such as the one used in the Motorola StarTAC and
in others, is varied during operation to improve the radiation characteristics, such as the amplitude
pattern and especially the input impedance. During nonusage, the element is usually retracted within
the body of the device to prevent it from damage. Units that do not utilize a visible monopole type
of antenna, especially in modern smart phones and similar devices like pads and tablets, some of
which are shown in Figure 4.25, use embedded/internal type of antenna element. One such embed-
ded/internal element that is often used is a Planar Inverted F Antenna (PIFA) [27], which will be
discussed in Chapter 14; there are others. Many of the stationary monopoles are often covered with
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Figure 4.24  Input impedance, real and imaginary parts, of a vertical monopole mounted on an experimental
cellular telephone device.

a dielectric cover. Within the cover, there is typically a straight wire. However, another design that
is often used is a helix antenna (see Chapter 10, Section 10.3.1) with a very small circumference and
overall length so that the helix operates in the normal mode, whose relative pattern is exhibited in
Figure 10.14(a) and which resembles that of a straight-wire monopole. The helix is used, in lieu of
a straight wire, because it can be designed to have larger input resistance, which is more attractive
for matching to typical feed lines, such as a coaxial line (see Problem 10.20).
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Figure4.25 Examples of external and embedded/internal antennas used in commercial cellular and CB radios.
(source: Reproduced with permissions from Motorola, Inc. (©) Motorola, Inc.; Nokia; Samsung (©) Samsung;
Microsoft; HTC; Midland Radio Corporation (¢) Midland Radio Corporation).

An antenna configuration that is widely used as a base-station antenna for mobile communication
and is seen almost everywhere is shown in Figure 4.26. It is a triangular array configuration consisting
of twelve dipoles, with four dipoles on each side of the triangle. Each four-element array, on each
side of the triangle, is used to cover an angular sector of 120°, forming what is usually referred to as
a sectoral array [see Section 16.3.1(B) and Figure 16.6(a)].

4.7.6 Horizontal Electric Dipole

Another dipole configuration is when the linear element is placed horizontally relative to the infinite
electric ground plane, as shown in Figure 4.27. The analysis procedure of this is identical to the
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Figure 4.27 Horizontal electric dipole, and its associated image, above an infinite, flat, perfect electric con-
ductor.
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one of the vertical dipole. Introducing an image and assuming far-field observations, as shown in
Figure 4.28(a,b), the direct component can be written as

g = ol @4-111)
= —_— n -
v =/ 4rry Sy
and the reflected one by
g = jr gl (4-111a)
= ———ssin -111a
w = JBRM 4, 14
or
.  klle7*r2
Ell/ = _J,IT}’Z smys (4-1 1 lb)
since the reflection coefficient is equal to R;, = —1.

To find the angle y, which is measured from the y-axis toward the observation point, we first form

A

cosy =a,-a,=4a,-(a,sinfcos¢+a,sinfsing +a,cosd) =sinfsing (4-112)

from which we find

siny = V/1 —cos2y = /1 —sin’ O sin> ¢ (4-113)

Since for far-field observations

ry~r—hcos@
ry = r+hcosd } for phase variations (4-114a)
ry=ry=r for amplitude variations (4-114b)

the total field, which is valid only above the ground plane (z > ;0 < 0 < 7/2,0 < ¢p < 2x), can be
written as

d " . klole_jkr .2 D ..
E,=E +E =jn 1 — sin” 0 sin“ ¢ [2j sin(kh cos 6)] (4-115)
v v v drr

Equation (4-115) again consists of the product of the field of a single isolated element placed sym-
metrically at the origin and a factor (within the brackets) known as the array factor. This again is
the pattern multiplication rule of (6-5), which is discussed in more detail in Chapter 6.

The general electric field expression E,, of (4-111), when the horizontal dipole is placed at the
origin of the coordinate system of Figure 4.28(a), reduces in the principal planes (xy, yz, xz) to the
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Horizontal electric dipole above an infinite perfect electric conductor.

spherical components Ey and E, as follows:

xy plane (0 = 90°) :

= kI le 7k wul le Ik
E, E,=—jn———1/1 — sin? @sin” ¢ = —j””— cos ¢
4rr 4xr
0=90°
yz plane (¢ = 90°) :
kI le~Ikr wul ek
o _ B =—in=t——1/1-sin’6sin’ g =—j/::’—cos0
v = zr . zr

(4-116a)

(4-116b)
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xz plane (¢ =0°) :

E9:0

E, = ,w,ulule'jk’ . .
E4 = —j————— = constant (isotropic)
4rr

(4-116¢)

These components match those of Example 4.5 that follows, which are derived based on the
vector potential approach. Also, based on (4-116a)—(4-116¢), it is easier to decide on the shape of
the amplitude pattern and ascertain the polarization of the wave in the three principal planes.

Example 4.5

Using the vector potential A and the procedure outlined in Section 3.6 of Chapter 3, derive the
far-zone spherical electric and magnetic field components of a horizontal infinitesimal dipole
placed at the origin of the coordinate system of Figure 4.1.

Solution: Using (4-4), but for a horizontal infinitesimal dipole of uniform current directed
along the y-axis, the corresponding vector potential can be written as

Iyle=7*r
A= ﬁy“o—

drr

with the corresponding spherical components, using the rectangular to spherical components

transformation of (4-5), expressed as

e—jkr

1yl
Ho cos @ sin ¢

Ay =A, cosOsingp =
0 ¥ in¢ nr

ﬂlole_jkr
Ay =Aycos¢p = 4—ﬂrcos¢

Using (3-58a) and (3-58b), we can write the corresponding far-zone electric and magnetic
field components as

) .wylole_jk’ .

Ey = —jwAy = —j———— cosOsin¢
4xr

) .wylole_jk’
E¢ = —]COA¢ = —]4—7” cos ¢

E wulyle 7k
Hy = -2 =j”0— 0s ¢

n 4nr

E wpulyle 7k
Hy = +-2 = +j'u0— cos 0 sin ¢

n 4znr

Although the electric-field components, and thus the magnetic field components, take a different
analytical form than (4-111), the patterns are the same.

To examine the variations of the total field as a function of the element height above the ground
plane, the two-dimensional elevation plane patterns (normalized to 0 dB) for ¢p = 90° (y-z plane)
when h = 0,)\/8,A/4,3)\/8,)\/2, and A are plotted in Figure 4.29. Since this antenna system is not
symmetric with respect to the z axis, the azimuthal plane (x-y plane) pattern is not isotropic.
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Figure 4.29  Elevation plane (¢ = 90°) amplitude patterns of a horizontal infinitesimal electric dipole for
different heights above an infinite perfect electric conductor.

To obtain a better visualization of the radiation intensity in all directions above the interface, the
three-dimensional pattern for 7 = A is shown plotted in Figure 4.30. The radial distance on the x-y
plane represents the elevation angle 6 from 0° to 90°, and the z-axis represents the normalized ampli-
tude of the radiation field intensity from O to 1. The azimuthal angle ¢ (0 < ¢ < 2x) is measured
from the x- toward the y-axis on the x-y plane.

As the height increases beyond one wavelength (2 > 1), a larger number of lobes is again formed.
This is illustrated in Figure 4.31 for 7 = 2A and 5\. The scalloping effect is evident here, as in
Figure 4-19 for the vertical dipole. The total number of lobes is equal to the integer that most closely

Normalized Field

Relative Amplitude Pattem (linear scale)
1

0.9

0.8

0.7

- 0.6

0.5

0.4

0.3

0.2

0.1

0

7" A\
x-z plane (¢=0°) y-z plane (¢ = 90°)

Figure 4.30  Three-dimensional amplitude pattern of an infinitesimal horizontal dipole a distance 4 = A above
an infinite perfect electric conductor.
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Elevation plane (¢ = 90°) amplitude patterns of a horizontal infinitesimal electric dipole for
heights 2\ and 5\ above an infinite perfect electric conductor.

is equal to
h
number of lobes ~ 2 (X) 4-117)

with unity being the smallest number.
Following a procedure similar to the one performed for the vertical dipole, the radiated power can
be written as

|1l 2 2 sin(2kh)  cos(2kh)  sin(2kh)
po—,E|0) |z2_ - 4-118
ad =150 (37 T 2k Qkh?  (2kh)3 (£119)
and the radiation resistance as
IN?[2  sin(kh)  cos(2kh)  sin(2kh)
R, = (- Z_ - + 4-119
r=ne x) [3 2kh Qkh? " (2khy ] 119

By expanding the sine and cosine functions into series, it can be shown that (4-119) reduces for small
values of kh to

R e te DI N

For kh — o0, (4-119) reduces to that of an isolated element. The radiation resistance, as given by
(4-119), is plotted in Figure 4.32 for 0 < 4 < 5\ when [ = A/50 and the antenna is radiating into
free-space (n ~ 1207x).

The radiation intensity is given by

2

2 Il
UxZ|E, 1= g 0% (1 = sin? 0 sin? ) sin(kh cos 6) (4-121)

2n v A
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Figure 4.32 Radiation resistance and maximum directivity of a horizontal infinitesimal electric dipole as a
function of its height above an infinite perfect electric conductor.

The maximum value of (4-121) depends on the value of kh (whether kh < 7 /2,h < \/4 or kh >
/2, h > A/4). It can be shown that the maximum of (4-121) is:

Iol|? kh < 7/2 (h < 1/4)
g | S ©=0% (4-122a)
U = e kh> 70/2 (h > A/4)
T (¢ = 0° and sin(khcos f,,,,) = 1 (4-122b)
2| x or 0, = cos™!(x/2kh)]

Using (4-118) and (4-122a), (4-122b), the directivity can be written as

4sin’(kh)
—~ kh<x/2(h<\/4 -
DO _ 4ﬂUmax _ R(kh) — ﬂ/ ( — / ) (4 12321)
Prad 4
— kh 2 (h>M\/4 (4-123b)
i > 7/2(h> 1/4)
where
Rikh) = 2 sin(2kh) 3 cos(2kh)  sin(2kh) (4-123¢)
3 2kh (2kh)? (2kh)3
For small values of ki (kh — 0), (4-123a) reduces to
kh—0 in’ i 2
. g 4 sin“(kh) —75 (sm kh> (4-124)
Z-2. Eu K
3 3 15

For h = 0 the element is shorted and it does not radiate. The directivity, as given by (4-123a)—(4-
123b) is plotted for O < i < 5\ in Figure 4.32. It exhibits a maximum value of 7.5 for small values
of h. Maximum values of slightly greater than 6 occur when & ~ (0.615 + n/2)A,n=1,2,3, ....
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Figure 4.33  Input impedance of a horizontal A/2 above a flat lossy electric conducting surface.

The input impedance Z;,, = R;,, + jX,, (referred to the current maximum) of a horizontal A/2
dipole above a flat lossy electric conductor is shown plotted in Figure 4.33 for 0 < 7 < A. Conduc-
tivities of 1072, 1071, 1, 10 S/m, and infinity (PEC) were considered. It is apparent that the con-
ductivity does have a more pronounced effect on the impedance values, compared to those of the
vertical dipole shown in Figure 4.23. The conductivity values used are representative of those of
the dry to wet earth. The values of the resistance and reactance approach, as the height increases,
the corresponding values of the isolated element (73 ohms for the resistance and 42.5 ohms for
the reactance).

4.8 GROUND EFFECTS

In the previous two sections the variations of the radiation characteristics (pattern, radiation resis-
tance, directivity) of infinitesimal vertical and horizontal linear elements were examined when they
were placed above plane perfect electric conductors. Although ideal electric conductors (¢ = o0) are
not realizable, their effects can be used as guidelines for good conductors (¢ > we, where € is the
permittivity of the medium).

One obstacle that is not an ideal conductor, and it is always present in any antenna system, is
the ground (earth). In addition, the earth is not a plane surface. To simplify the analysis, however,
the earth will initially be assumed to be flat. For pattern analysis, this is a very good engineering
approximation provided the radius of the earth is large compared to the wavelength and the obser-
vation angles are greater than about 57.3/(ka)'/? degrees from grazing (a is the earth radius) [30].
Usually these angles are greater than about 3°.

In general, the characteristics of an antenna at low (LF) and medium (MF) frequencies are pro-
foundly influenced by the lossy earth. This is particularly evident in the input resistance. When the
antenna is located at a height that is small compared to the skin depth of the conducting earth, the
input resistance may even be greater than its free-space values [30]. This leads to antennas with very
low efficiencies. Improvements in the efficiency can be obtained by placing radial wires or metallic
disks on the ground.
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The analytical procedures that are introduced to examine the ground effects are based on the geo-
metrical optics models of the previous sections. The image (virtual) source is again placed a distance
h below the interface to account for the reflection. However, for each polarization nonunity reflection
coefficients are introduced which, in general, will be a function of the angles of incidence and the
constitutive parameters of the two media. Although plane wave reflection coefficients are used, even
though spherical waves are radiated by the source, the error is small for conducting media [31]. The
spherical nature of the wavefront begins to dominate the reflection phenomenon at grazing angles
(i.e., as the point of reflection approaches the horizon) [32]. If the height () of the antenna above
the interface is much less than the skin depth §[6 = 1/2/(wuo)] of the ground, the image depth /
below the interface should be increased [31] by a complex distance 6(1 — j).

The geometrical optics formulations are valid provided the sources are located inside the lossless
medium. When the sources are placed within the ground, the formulations should include possible
surface-wave contributions. Exact boundary-value solutions, based on Sommerfeld integral formu-
lations, are available [30]. However they are too complex to be included in an introductory chapter.

4.8.1 Vertical Electric Dipole

The field radiated by an electric infinitesimal dipole when placed above the ground can be obtained
by referring to the geometry of Figures 4.17(a) and (b). Assuming the earth is flat and the
observations are made in the far field, the direct component of the field is given by (4-94) and the
reflected component by (4-95a) where the reflection coefficient R, is given by

o cos 8, — n; cos b,

, = = —R| (4-125)
1o cos 0; + n; cos 0,

where R, is the reflection coefficient for parallel polarization [7] and
Mo = A /@ = intrinsic impedance of free-space (air)
€0

@
n = i = intrinsic impedance of the ground
0| + JwE
0, = angle of incidence (relative to the normal)

0, = angle of refraction (relative to the normal)
The angles 0; and 0, are related by Snell’s law of refraction
7o sin@; = y; sin6, (4-126)

where
7o = jko = propagation constant for free-space (air)

ko = phase constant for free-space (air)
v1 = (a; + jk;) = propagation constant for the ground
a; = attenuation constant for the ground

ky = phase constant for the ground

Using the far-field approximations of (4-97a)—(4-98), the total electric field above the ground
(z > 0) can be written as

_ klyle

EG =Jjn - Sine[ejkhcosg + Rve—jthOSG] 7> 0 (4_127)

where R, is given by (4-125).
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The permittivity and conductivity of the earth are strong functions of the ground’s geological con-
stituents, especially its moisture. Typical values for the relative permittivity €, (dielectric constant)
are in the range of 5—100 and for the conductivity & in the range of 10™* — 10 S/m.

Plots of the magnitude and phase of the reflection coefficient R, as a function of the incidence
angle 0, at a frequency of f = 1 GHz, are shown in Figure 4.34(a, b), respectively. As is appar-
ent in Figure 4.34(a), for this polarization the reflection coefficient vanishes at the angles called
Brewster angles [7]. At these angles the phase undergoes an 180° phase jump, as illustrated in
Figure 4.34(b).

Normalized (to 0 dB) patterns of an infinitesimal dipole placed above the ground with height
h = M\/4, above a flat interface, are shown plotted in Figure 4.35. In the presence of the ground,
the radiation toward the vertical direction (80° > 6 > 0°) is more intense than that for the perfect
electric conductor, but it vanishes for grazing angles (6 = 90°). The null field toward the horizon (6 =
90°) is formed because the reflection coefficient R, approaches —1 as §; — 90°. Thus the ground
effects on the pattern of a vertically polarized antenna are significantly different from those of a
perfect conductor.

Significant changes also occur in the impedance. Because the formulation for the impedance is
much more complex [30], it will not be presented here. Graphical illustrations for the impedance
change of a vertical dipole placed a height /2 above a homogeneous lossy half-space, as compared to
those in free-space, can be found in [33].

4.8.2 Horizontal Electric Dipole

The analytical formulation of the horizontal dipole above the ground can also be obtained in a similar
manner as for the vertical electric dipole. Referring to Figure 4.28(a) and (b), the direct component
is given by (4-111) and the reflected by (4-111a) where the reflection coefficient R}, is given by
{ R for ¢ = 0°,180° plane
Rh .

Ry for ¢ = 90°,270° plane (+128)

where R is the reflection coefficient for parallel polarization, as given by (4-125), and R, is the
reflection coefficient for perpendicular polarization given by [7]

R = 1y cos 0; — 1y cos 0,

= 4-128
+ ny cos 6; + 1y cos 6, ( %)
The angles 6; and 0, are again related by Snell’s law of refraction as given by (4-126).

Using the far-field approximations of (4-114a) and (4-114b), the total field above the ground
(z > h) can be written as

kI eIk . .
E, =jn Z \/1 —sin? @sin? ¢ [°30 4 R, e KIcosO] 2> p (4-129)
r

where R, is given by (4-128).

To give an insight why R, is used in the ¢ =0°, 180° plane and why R is used in the
¢ =90°,270° plane, the reader is referred to electric field of (4-115), which is decomposed into
the far-zone spherical electric field components Ey and E,, represented by (4-116a), (4-116b) and
(4-116c¢) in the principal planes. From these expresssions, the polarization of the electric field radi-
ated by the horizontal dipole, and that reflected by the PEC ground plane, is more apparent; thus the
use of the appropriate reflection coeffients R, and R); in the respective principal planes.

Plots of the magnitude and phase of the reflection coefficient R),, as a function of the incidence
angle 6; on the xz(¢p = 0°) plane, are shown in Figure 4.36(a, b), respectively. It is apparent from
Figure 4.36(a) that for this polarization the reflection coefficient does not vanish, but rather mono-
tonically increases as the angle increases [7]. Similarly, the corresponding phase remains nearly
constant and at 180°. The corresponding normalized amplitude patterns in this plane (¢ = 0°) of a
horizontal electric dipole placed at a height 7 = A/4 above an interface are shown in Figure 4.37(a),
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Figure 4.34  Magnitude and phase variations of reflection coefficient R, as a function of incidence angle 6,,
forf = 1 GHz.
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Figure 4.35 Elevation plane (¢ = 0°,90° planes) amplitude patterns of an infinitesimal vertical dipole above
an interface. (h = A/4,f = 1 GHz).

whose shape is basically the same for the cases examined. This result is attributed to monotonic
and small variations of the amplitude and basically constant phase, for all the cases examined, of
the corresponding reflection coefficient R, as a function of the angle of incidence, as displayed in
Figure 4.36(a, b).

For the yz(¢ = 90°) plane, the magnitude and phase variations of the reflection coefficient R, as
a function of the incidence angle 6;, are the same as those for the vertical polarization coefficient
R,, as are displayed in Figure 4.34(a, b). For this plane (¢p = 90°), the corresponding normalized
amplitude pattern of a horizontal infinitesimal electric dipole placed at a height 7 = A/4 above the
interface are shown in Figure 4.37(b), whose shape is basically the same for the cases examined.
This can be attributed to the small amplitude and phase variation of the reflection coefficient R;/R,,
in this plane for incidence angle up to the Brewster angle, as displayed in Figure 4.34(a, b), and it is
due to the small field intensity of the horizontal dipole near and greater than the Brewster angle and
as the observation angle approached 90°; the field intensity vanishes at § = 90°.

4.8.3 PEC, PMC and EBG Surfaces

In general, PEC, PMC, and EBG surfaces individually possess attractive characteristics, but these
surfaces also exhibit shortcomings when electromagnetic radiating elements are mounted on them,
especially when the designs are judged based on aerodynamic, stealth, and conformal criteria. For
example, when an electric element is mounted vertically on a PEC surface, radiation and system
efficiency get reinforced; however, its low-profile geometry is undesirable for aerodynamic, stealth,
and conformal designs. Yet, when the same electric radiating element is placed horizontally on a
PEC surface, its radiation efficiency suffers because, at 4 = 0, the image possesses a 180° phase
shift and its radiation cancels the radiation of the actual electric element. While the height stays
small electrically, the radiation efficiency is low. For the radiation to attain maximum efficiency
at a direction normal to the surface, the horizontal element must be placed at a height A/4 above
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Figure 4.38  Geometry and §;, of horizontal dipole above PEC, PMC and EBG surfaces. (a) Geometry ([7]
Reprinted with permission from John Wiley & Sons, Inc.) (b) Reflection coefficient (SOURCE: [23] (©) 2003
IEEE).

the surface. Such an arrangement is especially not desirable on space-borne platforms because of
aerodynamic considerations. Furthermore, for stealth type of targets, configurations that are visible
to radar can create a large radar cross section (RCS) signature, which is why low-profile designs
are desirable for aerodynamic, stealth, and conformal applications. When the same electric radiating
element is placed horizontally on a PMC surface, its image then has a low profile and 0° phase, which
reinforces the radiation of the actual electric element. The characteristics of vertical and horizontal
electric elements placed vertically and horizontally on PEC and PMC surfaces are based on image
theory, and they are visually contrasted in Figure 4.16.

Whether a PEC, PMC, or EBG surface outperforms the others as a ground plane depends on the
application. This is best illustrated by a basic example. In Figure 4.38, a 0.4, dipole (A, is the
free-space wavelength at f= 12 GHz) is placed horizontally above PEC, PMC, and EBG surfaces.
The EBG surface has a height of 0.04,. The dipole is placed at a height & of 0.06A;,(h = 0.06\5)
above a A, X Ay, PEC, PMC square surface, which in turn means that the dipole is placed at a height
of 0.02),, above the EBG surface. The S;; of this system (based on a 50-ohm line impedance) was
simulated, using the FDTD method, over a frequency range of 10—18 GHz [23], and the results are
shown in Figure 4.38(b). From these results, it is clear that the EBG surface (which has a reflection
phase variation from +180° to —180°; see an example in Figure 4.14) exhibits a best return loss of
—27 dB while the PMC (which has a reflection phase of 0°) has a best return loss of —7.2 dB and the
PEC (which has a reflection phase of 180°) has a best return loss of only —3.5 dB. For the PMC sur-
face, the return loss is influenced by the mutual coupling, due to the close proximity between the main
element and its in-phase image, whereas for the PEC the return loss is influenced by the 180° phase
reversal, which severely impacts the radiation efficiency. In this example, the EBG surface, because
of its +180° to —180° phase variation over the frequency band-gap of the EBG design, outperforms
the PEC and PMC and serves as a good ground plane. The phase characteristics of the PEC and PMC
surfaces are constant (out-of-phase and in-phase, respectively) over the entire frequency range.
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4.8.4 Earth Curvature

Antenna pattern measurements on aircraft can be made using either scale models or full scale in-
flight. Scale model measurements usually are made indoors using electromagnetic anechoic cham-
bers, as described in Chapter 17. The indoor facilities provide a controlled environment, and all-
weather capability, security, and minimize electromagnetic interference. However, scale model mea-
surements may not always simulate real-life outdoor conditions, such as the reflecting surface of
seawater. Therefore full-scale model measurements may be necessary. For in-flight measurements,
reflecting surfaces, such as earth and seawater, introduce reflections, which usually interfere with the
direct signal. These unwanted signals are usually referred to as multipath. Therefore the total mea-
sured signal in an outdoor system configuration is the combination of the direct signal and that due
to multipath, and usually it cannot be easily separated in its parts using measuring techniques. Since
the desired signal is that due to the direct path, it is necessary to subtract from the total response the
contributions due to multipath. This can be accomplished by developing analytical models to predict
the contributions due to multipath, which can then be subtracted from the total signal in order to be
left with the desired direct path signal. In this section we will briefly describe techniques that have
been used to accomplish this [34], [35].

The analytical formulations of Sections 4.8.1 and 4.8.2 for the patterns of vertical and horizontal
dipoles assume that the earth is flat. This is a good approximation provided the curvature of the
earth is large compared to the wavelength and the angle of observation is greater than about 3°
from grazing [or more accurately greater than about 57.3/(ka)'/3 degrees, where a is the radius
of the earth] from grazing [36]. The curvature of the earth has a tendency to spread out (weaken,
diffuse, diverge) the reflected energy more than a corresponding flat surface. The spreading of the
reflected energy from a curved surface as compared to that from a flat surface is taken into account
by introducing a divergence factor D [32], [34], [35], defined as

reflected field from curved surface
reflected field from flat surface

D = divergence factor = (4-130)

The formula for D can be derived using purely geometrical considerations. It is accomplished by
comparing the ray energy density in a small cone reflected from a sphere near the principal point of
reflection with the energy density the rays (within the same cone) would have if they were reflected
from a plane surface. Based on the geometrical optics energy conservation law for a bundle of rays
within a cone, the reflected rays within the cone will subtend a circle on a perpendicular plane for
reflections from a flat surface, as shown in Figure 4.39(a). However, according to the geometry of
Figure 4.39(b), it will subtend an ellipse for a spherical reflecting surface. Therefore the divergence
factor of (4-130) can also be defined as

D= E_; _ | area contained in circle 12 (4-131)
E; area contained in ellipse

where
E; = reflected field from spherical surface

E)C = reflected field from flat surface

Using the geometry of Figure 4.40, the divergence factor can be written as [7] and [35]

P\
(7 + )P +9)

D= ; (4-132)
N

s+
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where p/ and p, are the principal radii of curvature of the reflected wavefront at the point of reflection
and are given, according to the geometry of Figure 4.40, by

L1, 1 4 (4-132a)

py s psiny (psiny)?  a?
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Observation

Source

Geometry for reflections from a spherical surface.

1 l, P S 14 (4-132b)

py s psiny (psiny)? a2
p= LZ (4-132¢)

1 + sin“y
A simplified form of the divergence factor is that of [37]
, -1/2 , -1/2

Dxie—25 | |12 (4-133)

a(s’ + s)siny a(s’ +s)

Both (4-132) and (4-133) take into account the earth curvature in two orthogonal planes.
Assuming that the divergence of rays in the azimuthal plane (plane vertical to the page) is negli-
gible (two-dimensional case), the divergence factor can be written as

, 1-1/2
3 ] (4-134)

D~ |14+2———
[ adtany

where y is the grazing angle. Thus the divergence factor of (4-134) takes into account energy spread-
ing primarily in the elevation plane. According to Figure 4.40
h’l = height of the source above the earth (with respect to the tangent at the point of reflection)

h’2 = height of the observation point above the earth (with respect to the tangent at the point
of reflection)

d = range (along the surface of the earth) between the source and the observation point
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a = radius of the earth (3,959 mi). Usually a % radius (=~ 5,280 mi) is used.
y = reflection angle (with respect to the tangent at the point of reflection).
d; = distance (along the surface of the earth) from the source to the reflection point

d, = distance (along the surface of the earth) from the observation point to the reflection point

The divergence factor D can be included in the formulation of the fields radiated by a vertical or a
horizontal dipole, in the presence of the earth, by modifying (4-127) and (4-129) and writing them,
respectively, as

—— sin O[e/Mc0s0 L DR eIkheos?) (4-135a)

i klole_jkr 02 0 in2 jkh cos 6 —jkh cos @
E, =jn—;——1/1 —sin" Osin” p[¢ + DR, e~ /kheos 0 (4-135b)

While the previous formulations are valid for smooth surfaces, they can still be used with rough
surfaces, provided the surface geometry satisfies the Rayleigh criterion [32] and [37]

A
8siny

h,, < (4-136)

where h,, is the maximum height of the surface roughness. Since the dividing line between a smooth
and a rough surface is not that well defined, (4-136) should only be used as a guideline.

The coherent contributions due to scattering by a surface with Gaussian rough surface statistics
can be approximately accounted for by modifying the vertical and horizontal polarization smooth
surface reflection coefficients of (4-125) and (4-128) and express them as

_ )2
R}, =RY, e 2ohocosty (4-137)
where
R} , = reflection coefficient of a rough surface for either vertical or horizontal polarization
Rg W= reflection coefficient of a smooth surface for either vertical (4-125) or horizontal (4-128)

polarization

hé = mean-square roughness height

A slightly rough surface is defined as one whose rms height is much smaller than the wavelength,
while a very rough surface is defined as one whose rms height is much greater than the wavelength.

Plots of the divergence factor as a function of the grazing angle y (or as a function of the observa-
tion point h/z) for different source heights are shown in Figure 4.41. It is observed that the divergence
factor is somewhat different and smaller than unity for small grazing angles, and it approaches unity
as the grazing angle becomes larger. The variations of D displayed in Figure 4.41 are typical but not
unique. For different positions of the source and observation point, the variations will be somewhat
different. More detailed information on the variation of the divergence factor and its effect on the
overall field pattern is available [35].

The most difficult task usually involves the determination of the reflection point from a knowledge
of the heights of the source and observation points, and the range d between them. Procedures to do
this have been developed [32], [34]-[38].

Using the analytical model developed here, computations were performed to see how well the
predictions compared with measurements. For the computations it was assumed that the reflecting
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surface is seawater possessing a dielectric constant of 81 and a conductivity of 4.64 S/m [34], [35].
To account for atmospheric refraction, a 4/3 earth was assumed [32], [34], [39] so the atmo-
sphere above the earth can be considered homogeneous with propagation occurring along straight
lines.

For computations using the earth as the reflecting surface, all three divergence factors of (4-
132)—(4-134) gave the same results. However, for nonspherical reflecting surfaces and for those
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with smaller radii of curvature, the divergence factor of (4-132) is slightly superior followed by
(4-133) and then by (4-134). In Figure 4.42 we display and compare the predicted and measured
height gain versus range d (4 < d < 14 nautical miles) for a vertical-vertical polarization system
configuration at a frequency of 167.5 MHz. The height gain is defined as the ratio of the total field
in the presence of the earth divided by the total field in the absence of the earth. A good agreement is
noted between the two. The peaks and nulls are formed by constructive and destructive interferences
between the direct and reflected components. If the reflecting surface were perfectly conducting, the
maximum height gain would be 2 (6 dB). Because the modeled reflecting surface of Figure 4.42 was
seawater with a dielectric constant of 81 and a conductivity of 4.64 S/m, the maximum height gain
is less than 6 dB. The measurements were taken by aircraft and facilities of the Naval Air Warfare
Center, Patuxent River, MD. Additional measurements were made but are not included here; they
can be found in [40] and [41].

A summary of the pertinent parameters, and associated formulas and equation numbers for this
chapter are listed in Table 4.3.

4.9 COMPUTER CODES

There are many computer codes that have been developed to analyze wire-type linear antennas, such
as the dipole, and they are too numerous to mention here. One simple program to characterize the
radiation characteristics of a dipole, designated as Dipole (both in FORTRAN and MATLAB), is
included in the publisher’s website for this book. Another much more advanced program, desig-
nated as the Numerical Electromagnetics Code (NEC), is a user-oriented software developed by
Lawrence Livermore National Laboratory [42]. It is a Method of Moments (MoM) code for ana-
lyzing the interaction of electromagnetic waves with arbitrary structures consisting of conducting
wires and surfaces. In the 1970s and 1980s the NEC was the most widely distributed and used
electromagnetics code. Included with the distribution are graphics programs for generating plots
of the structure, antenna patterns, and impedance. There are also other commercial software that
are based on the NEC. A compact version of the NEC is the MININEC (Mini-Numerical Elec-
tromagnetics Code) [42]—[44]. The MININEC is more convenient for the analysis of wire-type
antennas.

4.10 MULTIMEDIA

In the publisher’s website for this book, the following multimedia resources are included for the
review, understanding, and visualization of the material of this chapter.

a. Java-based interactive questionnaire, with answers.

b. Java-based applet for computing and displaying the radiation characteristics of a dipole.

c. Java-based visualization/animation for displaying the radiation characteristics of a dipole of
different lengths.

d. Matlab and Fortran computer program, designated Dipole, for computing the radiation char-
acteristics of a dipole. The description of the program is found in the corresponding READ
ME file in the publisher’s website for this book.

e. Matlab computer program, designated Ground_Reflections, to compute the amplitude and
phase variations of the reflection coefficients and the corresponding amplitude pattern of ver-
tical and horizontal dipoles placed at a height 4, above a planar interface.

f. Power Point (PPT) viewgraphs, in multicolor.
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TABLE 4.3 Summary of Important Parameters and Associated Formulas and Equation Numbers for

a Dipole in the Far Field
Parameter Formula Equation Number
Infinitesimal Dipole
(I < N/50)

Normalized power pattern

Radiation resistance R,

Input resistance R;,

Wave impedance Z,,

Directivity D,

Maximum effective area A,

Vector effective length Z,

Half-power beamwidth

Loss resistance R;

Normalized power pattern

Radiation resistance R,

Input resistance R;,

Wave impedance Z,,

Directivity D,,

Maximum effective area A,

Vector effective length 7,

Half-power beamwidth

Normalized power pattern

Radiation resistance R,

R

l WH, l WH,
RL = - —_— = — —_—
P 20 2zb \ 20

r

U=(E,)=C,

U =(E,,)* = C,sin* 6

() (5 -

2
o= =) (1) = ()

Ey
Z, = — ~n =377 ohms

H¢

D, = % =1.761 dB

_ 3
o 8x
?,=-4,lsinf
12 lmax = 2

max

HPBW = 90°

A

Small Dipole
(A/50 <1< 0/10)

U= (E,,)* = C,sin’0
2 (1Y
R, =20 (—)
r 7 }\‘

l 2
R, =R =20 2(-)
m r 7[ }\,

Z, = ~ 5 = 377 ohms

Ey
"= H,
D,===1.761dB
3w

o 8z
?,= —ﬁgé sin @
12 e lnax = 5

HPBW = 90°

[\SY ROV

|~

Half Wavelength Dipole
(I=2/2)

2
T
z 9>
Cos ( ) Cos

sin 6

R = %Cin(Zn') ~ 73 ohms

~ C,sin’ 0

;

(4-29)
(4-19)

(4-19)

(4-31)
(4-32)

(2-92)
Example 4.2

(4-65)

(2-90b)

(4-36a)

(4-37)

(4-37)

(4-36a), (4-36¢)

(2-92)

(4-36a)
(4-65)

(4-87)

(4-93)

(continued overleaf)
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TABLE 4.3 (continued)

Parameter

Formula

Equation Number

Input resistance R,,
Input impedance Z;,
Wave impedance Z,,

Directivity Dy

Vector effective length

Half-power beamwidth

Loss resistance R,

Normalized power pattern

Radiation resistance R,

Input resistance R;,

Input impedance Z,,

Wave impedance Z,,
Directivity D,,

Vector effective length Z,

U= (E9n)2 = CZ

in

R, =R, = -LC, (27) ~ 73 ohms
4r

Z, =73 +j42.5

E,
Z, = — =~ n =377 ohms
H

w
@
4

D, = ~1.643 = 2.156 dB
" ¢, Q)

cos <% cos 9)
r,=-a,——————
¢ % sin @

|> 8>

12| = 031831

Va

HPBW = 78°

P I /T

72V 26 " 4xb\ 20

Quarter-Wavelength Monopole
(I=2/4)

max —

2
cos <£ cos 0)
2

sin 6

R, = -LC, (27) ~ 36.5 ohms
T
R, =R, = -L-C, (2r) ~ 36.5 ohms
8

Z, =36.54;21.25
E,
Z,=— =~n =377 ohms
H

¢
D, =3.286=5.167 dB

C,= —ﬁeﬁ cos (%cosé‘)

> 3

12,0 = = = 0.31831

N

.3
~ C,sin” 0

(4-79), (4-93)

(4-93a)

4-91)

(2-91)

(4-84)
(4-65)

Example (2-13)

(4-87)

(4-106)

(4-106)
(4-106)

(2-91)

(4-84)
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PROBLEMS

4.1. A horizontal infinitesimal electric dipole of constant current /; is placed symmetrically about
the origin and directed along the x-axis. Derive the

(a) far-zone fields radiated by the dipole
(b) directivity of the antenna

4.2. Repeat Problem 4.1 for a horizontal infinitesimal electric dipole directed along the y-axis.
4.3. Repeat Problem 4.1 using the procedure of Example 4.5.

4.4. For Example 4.5,
(a) formulate an expression for the directivity.
(b) determine the radiated power.

(c) determine the maximum directivity by integrating the radiated power. Compare with that
of Problem 4.2 or any other infinitesimal dipole.

(d) determine the maximum directivity using the computer program Dipole; compare with
that of part (c).

4.5. For Problem 4.1 determine the polarization of the radiated far-zone electric fields (Ey, Ey)
and normalized amplitude pattern in the following planes:

@¢=0" (b)p=90° (c)b=90°
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Repeat Problem 4.5 for the horizontal infinitesimal electric dipole of Problem 4.2, which is
directed along the y-axis.

For Problem 4.3, determine the polarization of the radiated far-zone fields (£, E¢) in the
following planes:

@¢=0" (b)¢p=90° (c)0=90°
Compare with those of Problem 4.5.

For Example 4.5, determine the polarization of the radiated far-zone fields (Eg,Ey) in the
following planes:

@¢=0" (b)p=90° (c)6=90°
Compare with those of Problem 4.6.

An infinitesimal magnetic dipole of constant current /,, and length / is symmetrically placed
about the origin along the z-axis. Find the

(a) spherical E- and H-field components radiated by the dipole in all space
(b) directivity of the antenna

For the infinitesimal magnetic dipole of Problem 4.9, find the far-zone fields when the element
is placed along the

(a) x-axis, (b) y-axis

An infinitesimal electric dipole is centered at the origin and lies on the x-y plane along a line
which is at an angle of 45° with respect to the x-axis. Find the far-zone electric and magnetic
fields radiated. The answer should be a function of spherical coordinates.

Repeat Problem 4.11 for an infinitesimal magnetic dipole.

An infinitesimal electric dipole of length / and constant current /, is placed symmetrically
about the origin and it is tilted at an angle of 45° on the yz-plane. Using the vector potential
approach, determine for the infinitesimal dipole the:
(a) Far-zone electric and magnetic fields (E,, E,, E¢, z
H,, Hp, Hy) in terms of the spherical coordinates 45°\
r, 0, ¢. For example, Ey(r, 0, ¢). The same for the ’
other components.
(b) Directivity (dimensionless and in dB). .
>y
(c) Polarization of the radiated fields (linear circular N /
or elliptical).

Derive (4-10a)—(4-10c) using (4-8a)—(4-9).

Derive the radiated power of (4-16) by forming the average power density, using (4-26a)—
(4-26¢), and integrating it over a sphere of radius r.

Derive the far-zone fields of an infinitesimal electric dipole, of length / and constant current
Iy, using (4-4) and the procedure outlined in Section 3.6. Compare the results with (4-26a)—
(4-26¢).

Derive the fifth term of (4-41).

For an antenna with a maximum linear dimension of D, find the inner and outer boundaries
of the Fresnel region so that the maximum phase error does not exceed

(a)wr/16rad (b)xw/4rad (c)18° (d) 15°
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The boundaries of the far-field (Fraunhofer) and Fresnel regions were selected based on a
maximum phase error of 22.5°, which occur, respectively, at directions of 90° and 54.74°
from the axis along the largest dimension of the antenna. For an antenna of maximum length
of 5, what do these maximum phase errors reduce to at an angle of 30° from the axis along
the length of the antenna? Assume that the phase error in each case is totally contributed by
the respective first higher order term that is being neglected in the infinite series expansion
of the distance from the source to the observation point.

The current distribution on a terminated and matched long linear (traveling wave) antenna of
length [, positioned along the z-axis and fed at its one end, is given by

~ il
I=4ale7, 0<7<I

where [ is a constant. Derive expressions for the
(a) far-zone spherical electric and magnetic field components
(b) radiation power density

A line source of infinite length and constant current /) is positioned along the z-axis. Find the
(a) vector potential A
(b) cylindrical E- and H-field components radiated

+oo e_jﬂ\/b2+t2
—dt!
~ Ve+e

Hint: = —jzH,? (Bb)

where H,® (ax) is the Hankel function of the second kind of order zero.
Show that (4-67) reduces to (4-68) and (4-88) to (4-89).

A thin linear dipole of length [ is placed symmetrically about the z-axis. Find the far-zone
spherical electric and magnetic components radiated by the dipole whose current distribution
can be approximated by

10(1+%z’>, —1/2<7 <0

(a) L(Z) =
10(1—%1'), 0<7 <12

(b) I() = Iycos <%z’), —-1/2<7 <1)2

(©) L() = Iy cos® (%ﬂ) . —l2<7 <12

A center-fed electric dipole of length [ is attached to a balanced lossless transmission line
whose characteristic impedance is 50 ohms. Assuming the dipole is resonant at the given
length, find the input VSWR when

@Il=M4 b)I=r/2 (c)I=3\/4 @I=)r

Use the equations in the book or the computer program of this chapter. Find the radiation
efficiency of resonant linear electric dipoles of length

@1=1/50 (b)l=r/4 (©)I=n/2 (d)I=2r
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Assume that each dipole is made out of copper [¢ = 5.7 X 107 S/m], has a radius of 10742,
and is operating at f = 10 MHz. Use the computer program Dipole of this chapter to find the
radiation resistances.

Write the far-zone electric and magnetic fields radiated by a magnetic dipole of [ = A/2
aligned with the z-axis. Assume a sinusoidal magnetic current with maximum value 7,

A resonant center-fed dipole is connected to a 50-ohm line. It is desired to maintain the input
VSWR = 2.

(a) What should the largest input resistance of the dipole be to maintain the VSWR = 2?
(b) What should the length (in wavelengths) of the dipole be to meet the specification?
(c) What is the radiation resistance of the dipole?

The radiation field of a particular antenna is given by:

A DA ToAye
E = agjopk sin 0 ——— + a opu sin ———
4rr r

The values A| and A, depend on the antenna geometry. Obtain an expression for the radiation
resistance. What is the polarization of the antenna?

The approximate far zone electric field radiated by a very thin wire linear dipole of length /,
positioned symmetrically along the z-axis, is given by

—jkr
. e/
Ey~C, sin!= g——

where C,, is a constant. Determine the:
(a) Exact directivity (dimensionless and in dB).

(b) Approximate directivity (dimensionless and in dB) using an approximate but appropriate
formula (state the formula you are using).

(c) Length of the dipole (in wavelengths).
(d) Input impedance of the dipole. Assume the wire radius a is very small (a < A).

For a A/2 dipole placed symmetrical along the z-axis, determine the
(a) vector effective height
(b) maximum value (magnitude) of the vector effective height

(c) ratio (in percent) of the maximum value (magnitude) of the vector effective height to its
total length

(d) maximum open-circuit output voltage when a uniform plane wave with an electric field of
E'|p_g0e = —8,1072 volts/wavelength

impinges at broadside incidence on the dipole.

A base-station cellular communication system utilizes arrays of A/2 dipoles as transmitting
and receiving antennas. Assuming that each element is lossless and that the input power to
each of the A /2 dipoles is 1 watt, determine at 7,900 MHz and a distance of 5 km the maximum

(a) radiation intensity. Specify also the units.
(b) radiation density (in watts/m?)

for each \/2 dipole. This determines the safe level for human exposure to EM radiation.
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A \/2 dipole situated with its center at the origin radiates a time-averaged power of 600 W at
a frequency of 300 MHz. A second A/2 dipole is placed with its center at a point P(r, 6, ¢),
where » =200 m, 8 = 90°, ¢ = 40°. It is oriented so that its axis is parallel to that of the
transmitting antenna. What is the available power at the terminals of the second (receiving)
dipole?

A half-wave dipole is radiating into free-space. The coordinate system is defined so that the
origin is at the center of the dipole and the z-axis is aligned with the dipole. Input power to the
dipole is 100 W. Assuming an overall efficiency of 50%, find the power density (in W/m?) at
r=500m, 6 = 60°, ¢p =0°.

A small dipole of length / = A/20 and of wire radius a = A/400 is fed symmetrically, and it
is used as a communications antenna at the lower end of the VHF band (f = 30 MHz). The
antenna is made of perfect electric conductor (PEC). The input reactance of the dipole is
given by

X, = 120 [In(l/2a) — 1]

m
tan <”—l>
A

Determine the following:
(a) Input impedance of the antenna. State whether it is inductive or capacitive.
(b) Radiation efficiency (in percent).

(c) Capacitor (in farads) or inductor (in henries) that must be connected in series with the
dipole at the feed in order to resonate the element. Specify which element is used and its
value.

A half-wavelength (I = A/2) dipole is connected to a transmission line with a characteristic
impedance of 75 ohms. Determine the following:

(a) Reflection coefficient. Magnitude and phase (in degrees).
(b) VSWR.

It is now desired to resonate the dipole using, in series, an inductor or capacitor. At a fre-
quency of 100 MHz, determine:

(c) What kind of an element, inductor or capacitor, is needed to resonate the dipole?

(d) What is the inductance or capacitance?

(e) The new VSWR of the resonant dipole.

A )\/2 dipole is connected to a 50-ohm lossless transmission line. It is desired to resonate the

element at 300 MHz by placing an inductor or capacitor in parallel/shunt at its feed points.

(a) What is the reflection coefficient and VSWR of the dipole before the insertion of the
parallel/shunt element?

(b) What kind of an element is needed, inductor or capacitor, and what is its value in order
to resonate the dipole?

(¢) What is the new reflection coefficient and VSWR inside the transmission line after the
insertion of the parallel/shunt element?

AL/2dipoleis used as aradiating element while it is connected to a 50-ohm lossless transmis-
sion line. It is desired to resonate the element at /.9 GHz by placing in series capacitor(s) or
inductor(s) (whichever are appropriate) at its input terminals. Determine the following:
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(a) VSWR inside the transmission line before the dipole is resonated [before the capaci-
tor(s) or inductor(s) are placed in series].

(b) Total single capacitance Cy (in farads) or inductance L (in henries) that must be placed
in series with the element at its input terminals in order to resonate it. (See diagram a).

(c) Individual two capacitances C, (in farads) or inductances L, (in henries) that must be
placed in series with the element at its input terminals in order to resonate it. We need to
use two capacitors or two inductors to keep the system balanced by placing in series one
with each arm of the dipole (see diagram b).

(d) VSWR after the element is resonated with capacitor(s) or inductor(s).

—— Gy j

50 Ohms 50 Ohms
° ° C,/L

(a) I (b) I

The input impedance of a A/2 dipole, assuming the input (feed) terminals are at the center of
the dipole, is equal to 73 + j42.5. Assuming the dipole is lossless, find the

C,/L,

o'~o

(a) inputimpedance (real and imaginary parts) assuming the input (feed) terminals have been
shifted to a point on the dipole which is A/8 from either end point of the dipole length

(b) capacitive or inductive reactance that must be placed across the new input terminals of
part (a) so that the dipole is self-resonant

(c) VSWR at the new input terminals when the self-resonant dipole of part (b) is connected
to a “twin-lead” 300-ohm line

A linear half-wavelength dipole is operating at a frequency of 1 GHz; determine the
capacitance or inductance that must be placed across (in parallel) the input terminals of
the dipole so that the antenna becomes resonant (make the total input impedance real).
What is then the VSWR of the resonant half-wavelength dipole when it is connected to a
50-ohm line?

A folded dipole (whose length is [ = A/2 and spacing s between the two parallel length
is much smaller than A, s < A), acts as an impedance transformer with a turns ratio of
2:1; i.e., its impedance is 4 times greater than that of a regular A/2 dipole. Such a folded
dipole was a basic feed element of a Yagi-Uda antenna,

which was popular TV antenna prior to the cable, especially s

for 2-3 TV channels. Assuming the wire radius of the folded >
dipole is very small compared to the wavelength (a < A): —

(a) Write an expression for the input impedance of the 20 —phe—
folded dipole.

(b) If we want to resonate the folded dipole, what kind of an
element (inductor or capacitor) shall we place in paral- Transmission
lel across the input terminals of the folded dipole; i.e., Input l
which of the two is appropriate to accomplish the task? Line
(c) At a frequency of 100 MHz, what is the value of the
inductor or capacitor, whichever is appropriate to res-
onate the folded dipole of Part b?
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(d) After the folded dipole has been resonated, what is its:
¢ Input impedance?
¢ Input reflection coefficient (assume a twin-lead transmission line connected to it with
a characteristic impedance of 300 ohms)?
¢ VSWR?

4.41. The field radiated by an infinitesimal electric dipole, placed along the z-axis a distance s along
the x-axis, is incident upon a waveguide aperture antenna of dimensions a and b, mounted on
an infinite ground plane, as shown in the figure. The normalized electric field radiated by the
aperture in the E-plane (x-z plane; ¢ = 0°) is given by

(KB
anpipete sn (3 cos0)

E=-a
W axr k—b cos 6
2

dipole

X

Assuming the dipole and aperture antennas are in the far field of each other, determine the
polarization loss (in dB) between the two antennas.

4.42. We are given the following information about antenna A:
(a) When A is transmitting, its radiated far-field expression for the E field is given by:

—jkz (4, +ja,
E,G)=ES—=—"2) v/m

(b) When A is receiving an incident plane wave given by:

E/@=4,% V/m

its open-circuit voltage is V| = 4 W20°
If we use the same antenna to receive a second incident plane given by:

E,(2) = 1024, + 4, ) V/m

find its received open-circuit voltage V.
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A 3-cmlong dipole carries a phasor current I, = 10e/®°A. Assuming that A = 5 cm, determine
the E- and H-fields at 10 cm away from the dipole and at § = 45°.

The radiation resistance of a thin, lossless linear electric dipole of length / = 0.6\ is 120 ohms.
What is the input resistance?

A lossless, resonant, center-fed 3)\/4 linear dipole, radiating in free-space is attached to a
balanced, lossless transmission line whose characteristic impedance is 300 ohms. Assuming
a = 0.03A, calculate the:

(a) radiation resistance (referred to the current maximum)
(b) input impedance (referred to the input terminals)
(¢) VSWR on the transmission line

For parts (a) and (b) use the computer program Dipole at the end of the chapter.
Repeat Problem 4.45 for a center-fed 5A/8 dipole.

A dipole antenna, with a triangular current distribution, is used for communication with sub-
marines at a frequency of 150 kHz. The overall length of the dipole is 200 m, and its radius is
1 m. Assume a loss resistance of 2 ohms in series with the radiation resistance of the antenna.

(a) Evaluate the input impedance of the antenna including the loss resistance. The input reac-
tance can be approximated by

B [In(l/2a) — 1]
Xin = —120 tan(zl/\)

(b) Evaluate the radiation efficiency of the antenna.
(c) Evaluate the radiation power factor of the antenna.

(d) Design a conjugate-matching network to provide a perfect match between the antenna
and a 50-ohm transmission line. Give the value of the series reactance X and the turns
ratio n of the ideal transformer.

(e) Assuming a conjugate match, evaluate the instantaneous 2:1 VSWR bandwidth of the
antenna.

A uniform plane wave traveling along the negative z-axis given by

X
Incident

I / Wave
E, = (24, —ja)e""E, z

crossed-dipole
y antenna

impinges upon an crossed-dipole antenna consisting of two identical dipoles, one directed
along the x-axis and the other directed along the y-axis, both fed with the same amplitude.
The y-directed dipole is fed with a 90° phase lead compared to the x-directed dipole.
(a) Write an expression for the polarization unit vector of the incident wave.
(b) Write an expression for the polarization unit vector of the receiving antenna along the +
2-axis.
(c) For the incident wave, state the following:
1. Polarization (linear, circular, elliptical) and axial ratio.
2. Rotation of the polarization vector (CW, CCW).
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(d) For the receiving antenna, state the following:
1. Polarization (linear, circular, elliptical) and axial ratio.

2. Rotation of the polarization vector (CW, CCW).

(e) Determine the polarization loss factor (dimensionless and in dB) between the incident
wave and the receiving antenna.

A half-wavelength (I = A/2) dipole, positioned symmetrically about the origin along the z-
axis, is used as a receiving antenna. A 300 MHz uniform plane wave, traveling along the
x-axis in the negative x direction, impinges upon the A/2 dipole. The incident plane wave has
a power density of 2 watts/m?, and its electric field is given by

E', = (3a_+ja)Eyeth

where E| is a constant. Determine the following:

(a) Polarization of the incident wave (including its axial ratio and sense of rotation, if appli-
cable).

(b) Polarization of the antenna toward the x-axis (including its axial ratio and sense of direc-
tion, if applicable).

(c) Polarization losses (in dB) between the antenna and the incoming wave (assume far-zone
fields for the antenna).

(d) Maximum power (in watts) that can be delivered to a matched load connected to the A/2
dipole (assume no other losses).

Derive (4-102) using (4-99).

Determine the smallest height that an infinitesimal vertical electric dipole of / = A/50 must
be placed above an electric ground plane so that its pattern has only one null (aside from
the null toward the vertical), and it occurs at 30° from the vertical. For that height, find the
directivity and radiation resistance.

A /50 linear dipole is placed vertically at a height 2 = 2A above an infinite electric ground
plane. Determine the angles (in degrees) where all the nulls of its pattern occur.

A linear infinitesimal dipole of length / and constant current is placed vertically a distance
h above an infinite electric ground plane. Find the first five smallest heights (in ascending
order) so that a null is formed (for each height) in the far-field pattern at an angle of 60° from
the vertical.

A vertical infinitesimal linear dipole is placed a distance 4 = 3A/2 above an infinite perfectly

conducting flat ground plane. Determine the

(a) angle(s) (in degrees from the vertical) where the array factor of the system will achieve
its maximum value

(b) angle (in degrees from the vertical) where the maximum of the fotal field will occur

(c) relative (compared to its maximum) field strength (in dB) of the total field at the angles
where the array factor of the system achieves its

maximum value (as obtained in part a).

An infinitesimal dipole of length / is placed a distance |

. . N 60°7] €0, U
s from an air-conductor interface and at an angle of
6 = 60° from the vertical axis, as shown in the fig-
ure. Determine the location and direction of the image
source which can be used to account for reflections. :
Be very clear in indicating the location and direction ‘
of the image. Your answer can be in the form of a very k
clear sketch. e
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An infinitesimal magnetic dipole of length [, directed along the z-axis, is placed at a height &
above a Perfect Electric Conductor (PEC).

(a) Write (you do not have to derive it, as long as it is correct) an expression for the normal-
ized Array Factor of the equivalent system.

(b) For a height & = 0.52, find all the nulls in terms of the angle theta (0° < 6 < 180°) (in
degrees).

(c) If it is desired to place a null at 6 = 60°, find the two smallest heights, (other than
h = 0) h (in A) that will accomplish this.

It is desired to design an antenna system, which utilizes a vertical infinitesimal dipole of
length [ placed a height & above a flat, perfect electric conductor of infinite extent. The design
specifications require that the pattern of the array factor of the source and its image has only
one maximum, and that maximum is pointed at an angle of 60° from the vertical. Determine
(in wavelengths) the height of the source to achieve this desired design specification.

A very short (I < A/50) vertical electric dipole is mounted on a pole a height & above the
ground, which is assumed to be flat, perfectly conducting, and of infinite extent. The dipole is
used as a transmitting antenna in a VHF (f = 50 MHz) ground-to-air communication system.
In order for the communication system transmitting antenna signal not to interfere with a
nearby radio station, it is necessary to place a null in the vertical dipole system pattern at an
angle of 80° from the vertical. What should the shortest height (in meters) of the dipole be
to achieve the desired specifications?

A half-wavelength dipole is placed vertically on an infinite electric ground plane. Assuming
that the dipole is fed at its base, find the

(a) radiation impedance (referred to the current maximum)

(b) input impedance (referred to the input terminals)

(c) VSWR when the antenna is connected to a lossless 50-ohm transmission line.

A lossless half-wavelength (I = \/2) dipole operating at 1 GHz, with an ideal sinusoidal

current distribution, is placed horizontally a height h above a flat, smooth and infinite in

extent perfect electric conductor (PEC).

(a) Write an expression for the normalized array factor. Assume angle 6 is measured from
the vertical to the ground plane.

(b) For aheight h = 1.5\, determine all the physical angles 6 (0° < 8 < 90°) where the array
factor achieves its maximum value.

(c) For the same height 4 = 1.5A, find all the physical angles 6 (0° < 0 < 90°) where the
array factor has null(s).

A resonant vertical A/8 monopole, mounted on an infinite flat Perfect Electric Conductor
(PEC), is connected to a lossless transmission line. It is desired to maintain the maximum
reflection coefficient inside the transmission line to 0.2. Determine the:

(a) Total far-zone electric field radiated by the A/8 monopole on and above the PEC.
(b) Input resistance of the monopole.

(c) The desired characteristic impedance of the transmission line to maintain the maximum
reflection coefficient to 0.2.

A vertical A/2 dipole is the radiating element in a circular array used for over-the-horizon
communication system operating at / GHz. The circular array (center of the dipoles) is placed
at a height h above the ground that is assumed to be flat, perfect electric conducting, and
infinite in extent.
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(a) In order for the array not to be interfered with by another communication system that
is operating in the same frequency, it is desired to place only one null in the elevation
pattern of the array factor of a single vertical A/2 dipole at an angle of 8 = 30° from
zenith (axis of the dipole). Determine the smallest nonzero height h (in meters) above the
ground at which the center of the dipole must be placed to accomplish this.

(b) If the height (at its center) of the vertical dipole is 0.3 m above ground, determine all the
angles 6 from zenith (in degrees) where all the
1. null(s) of the array factor of a single dipole in the elevation plane will be

directed toward.

2. main maximum (maxima) of the array factor of a single dipole in the elevation plane
will be directed toward.

A vertical A/2 dipole antenna is used as a ground-to-air, over-the-horizon communication
antenna at the VHF band (f = 200 MHz). The antenna is elevated at a height h (measured
from its center/feed point) above ground (assume the ground is flat, smooth, and perfect elec-
tric conductor extending to infinity). In order to avoid interference with other simultaneously
operating communication systems, it is desired to place a null in the far-field amplitude pat-
tern of the antenna system at an angle of 60° from the vertical.

Determine the three smallest physical/nontrivial heights (in meters at 200 MHz) above the
ground at which the antenna can be placed to meet the desired pattern specifications.

A ground-based, resonant, lossless linear vertical half-wavelength dipole (of length [ = 1 /2),
elevated at a height 4 about PEC (perfect electric conducting) ground plane, is used as
the antenna for a ground-based communication system. It is expected that some interfer-
ers/threats to the ground-based communication system will appear at a height 1,000 meters
and at a horizontal distance of 1,000 meters from the ground-based antenna, as shown in the
figure below.

To eliminate the presence of the interferers/threats to the operation of the ground-based
communication system, we want to choose the height % of the ground-based system above
the PEC ground so that we place an ideal null in the angular direction @ of the interferers as
measured from the reference of the coordinate system.

Determine, at a frequency of 300 MHz:

(a) The normalized AF (array factor) of the equivalent antenna system that is valid in all
space on and above the PEC ground plane.

Interferers/

Threats @

1,000 m
M2 dipole
9\
h 2
l v
¥
PEC }47 1,000 m ———— ¥
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(b) The two smallest heights of h (in meters), from the smallest to largest, that we can place
the ground-based antenna and achieve the goal; i.e., to place a null in the € direction
and eliminate the presence of the interferers/threats to the operation of the ground-based
system. Assume far-field observations.

A base-station cellular communication systems lossless antenna, which is placed in a resi-

dential area of a city, has a maximum gain of /6 dB (above isotropic) toward the residential

area at 1,900 MHz. Assuming the input power to the antenna is 8 watts, what is the

(a) maximum radiated power density (in watts/ cm?) at a distance of 100 m (line of sight)
from the base station to the residential area? This will determine the safe level for human
exposure to electromagnetic radiation.

(b) power (in watts) received at that point of the residential area by a cellular telephone whose
antenna is a lossless \/4 vertical monopole and whose maximum value of the ampli-
tude pattern is directed toward the maximum incident power density. Assume the \/4
monopole is mounted on an infinite ground plane.

A vertical A/4 monopole is used as the antenna on a cellular telephone operating at 1.9 GHz.

Even though the monopole is mounted on a box-type cellular telephone, for simplicity pur-

poses, assume here that it is mounted on a perfectly electric conducting (PEC) ground plane.

Assuming an incident maximum power density of 1070 watts/m?, state or determine, for the

monopole’s omnidirectional pattern, the

(a) maximum directivity (dimensionless and in dB). You must state the rationale or method
you are using to find the directivity.

(b) maximum power that can be delivered to the cellular telephone receiver. Assume no
losses.

A vertical, infinitesimal in length (/ = A/50), monopole is placed on top of a police car, and it

is used as an antenna for an emergency radio receiver system operating at /0 MHz. Consider

that the top of the police car to be an infinite and planar PEC.The sensitivity (minimum

power) of the system receiver, to be able to detect an incoming signal, is 10 pwatts. Assume

the incoming signal is circularly polarized and it incident from a horizontal direction (grazing

angle; 6 = 90°), what is the:

(a) Maximum directivity of the monopole in the presence of the PEC (dimensionless and in
dB)?

(b) Minimum required power density (in watts/cm®) of the incoming signal to be detected by
the radio receiver?

M150 Incoming Wave

y 6 =90°
PEC
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A homeowner uses a CB antenna mounted on the top of his house. Let us assume that the
operating frequency is 900 MHz and the radiated power is 7,000 watts. In order not to be
exposed to a long-term microwave radiation, there have been some standards, although con-
troversial, developed that set the maximum safe power density that humans can be exposed to
and not be subject to any harmful effects. Let us assume that the maximum safe power density
of long-term human RF exposure is 1073 watts/cm? or 10 watts/m?. Assuming no losses,
determine the shortest distance (in meters) from the CB antenna you must be in order not
to exceed the safe level of power density exposure. Assume that the CB antenna is radiating
into free-space and it is

(a) an isotropic radiator.
(b) a A/4 monopole mounted on an infinite PEC and radiating towards its maximum.

Derive (4-118) using (4-115).

An infinitesimal horizontal electric dipole of length / = A/50 is placed parallel to the y-axis

a height 4 above an infinite electric ground plane.

(a) Find the smallest height / (excluding /2 = 0) that the antenna must be elevated so that a
null in the ¢ = 90° plane will be formed at an angle of 8 = 45° from the vertical axis.

(b) For the height of part (a), determine the (1) radiation resistance and (2) directivity (for
6 = 0°) of the antenna system.

A horizontal A/50 infinitesimal dipole of constant current and length [ is placed parallel to
the y-axis a distance & = 0.707A above an infinite electric ground plane. Find all the nulls
formed by the antenna system in the ¢ = 90° plane.

An infinitesimal electric dipole of length [ = A/50 is placed horizontally at a height of & =
2). above a flat, smooth, perfect electric conducting plane which extends to infinity. It is
desired to measure its far-field radiation characteristics (e.g. amplitude pattern, phase pattern,
polarization pattern, etc.). The system is operating at 300 MHz. What should the minimum
radius (in meters) of the circle be where the measurements should be carried out? The radius
should be measured from the origin of the coordinate system, which is taken at the interface
between the actual source and image.

An infinitesimal magnetic dipole is placed vertically a distance 4 above an infinite, perfectly
conducting electric ground plane. Derive the far-zone fields radiated by the element above
the ground plane.

Repeat Problem 4.73 for an electric dipole above an infinite, perfectly conducting magnetic
ground plane.

A A/50 infinitesimal linear electric dipole operating at 500 MHz is placed horizontally a

height & above a simulated flat, smooth and infinite in extent perfect magnetic conductor

(PMC). Determine/write the:

(a) Array factor for the system that can be used to determine the far-zone field on and above
the PMC. Justify as to why you chose that array factor.

(b) Smallest height h (in A and in cm) that the A./50 electric dipole must be placed so that the
total far-zone amplitude pattern has a null at an angle of § = 60° from the normal/vertical
to the PMC interface.

Repeat Problem 4.73 for a magnetic dipole above an infinite, perfectly conducting magnetic
ground plane.

An infinitesimal vertical electric dipole is placed at height /2 above an infinite PMC (perfect
magnetic conductor) ground plane.
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(a) Find the smallest height / (excluding 4 = 0) to which the antenna must be elevated so
that a null is formed at an angle & = 60° from the vertical axis

(b) For the value of /& found in part (a), determine
1. the directive gain of the antenna in the § = 45° direction
2. the radiation resistance of the antenna normalized to the intrinsic impedance of the
medium above the ground plane

Assume that the length of the antenna is / = A/100.

A vertical A/2 dipole, operating at 1 GHz, is placed a distance of 5 m (with respect to the
tangent at the point of reflections) above the earth. Find the total field at a point 20 km from
the source (d = 20 X 10> m), at a height of 1,000 m (with respect to the tangent) above the
ground. Use a 4/3 radius earth and assume that the electrical parameters of the earth are
g =5,0 =107 S/m.

A ground-based, resonant, lossless linear vertical half-wavelength dipole (of length [ = A /2),
is used to communicate with a space-borne lossless, resonant, linear wave-wavelength dipole
(of length [ = L\/2). Both dipoles are oriented along the z axis. While one dipole is assumed
to be at ground level, the other is elevated at a height of 1,000 meter; the two dipoles are
separated horizontally by 1,000 meters, as shown below.

Assuming the input power (in the 50-ohm transmission line) feeding the dipole at the
ground level is 100 mwatts, determine, at a frequency of 3 GHz, the power (in watts) received
in the 50-ohm transmission line which is connected to the space borne dipole.

Assume both dipoles are radiating in an unbounded free space and each is in the far-field

of the other.
z
A2 dipole f
- %) Z.=50 ohms

1,000 m

Z
W2 dipole 4

Z,. =50 ohms (= :

1,000 m4»|

Two astronauts equipped with handheld radios land on different parts of a large asteroid. The
radios are identical and transmit 5 W average power at 300 MHz. Assume the asteroid is a
smooth sphere with physical radius of 1,000 km, has no atmosphere, and consists of a lossless
dielectric material with relative permittivity £, = 9. Assume that the radios’ antennas can be
modeled as vertical infinitesimal electric dipoles. Determine the signal power (in microwatts)
received by each radio from the other, if the astronauts are separated by a range (distance
along the asteroid’s surface) of 2 km, and hold their radios vertically at heights of 1.5 m
above the asteroid’s surface.

Additional Information Required to Answer this Question: Prior to landing on the asteroid
the astronauts calibrated their radios. Separating themselves in outer space by 10 km, the
astronauts found the received signal power at each radio from the other was 10 microwatts,
when both antennas were oriented in the same direction.
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4.81. A satellite S transmits an electromagnetic wave, at 10 GHz, via its transmitting antenna. The
characteristics of the satellite-based transmitter are:

(a) The power radiated from the satellite antenna is 10 W.

(b) The distance between the satellite antenna and a point A on the earth’s surface is 3.7 X
107 m, and

(c) The satellite transmitting antenna directivity in the direction SA is 50 dB. Ignoring
ground effects,
1. Determine the magnitude of the E-field at A.
2. If the receiver at point A is a A/2 dipole, what would be the voltage reading at the

terminals of the antenna?

4.82. Derive (4-132) based on geometrical optics as presented in section 13.2 of [7].
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Loop Antennas

5.1 INTRODUCTION

Another simple, inexpensive, and very versatile antenna type is the loop antenna. Loop antennas take
many different forms such as a rectangle, square, triangle, ellipse, circle, and many other configura-
tions. Because of the simplicity in analysis and construction, the circular loop is the most popular and
has received the widest attention. It will be shown that a small loop (circular or square) is equivalent
to an infinitesimal magnetic dipole whose axis is perpendicular to the plane of the loop. That is, the
fields radiated by an electrically small circular or square loop are of the same mathematical form as
those radiated by an infinitesimal magnetic dipole.

Loop antennas are usually classified into two categories, electrically small and electrically large.
Electrically small antennas are those whose overall length (circumference) is usually less than about
one-tenth of a wavelength (C < A/10). However, electrically large loops are those whose circum-
ference is about a free-space wavelength (C ~ A). Most of the applications of loop antennas are in
the HF (3—30 MHz), VHF (30-300 MHz), and UHF (300-3,000 MHz) bands. When used as field
probes, they find applications even in the microwave frequency range.

Loop antennas with electrically small circumferences or perimeters have small radiation resis-
tances that are usually smaller than their loss resistances. Thus they are very poor radiators, and they
are seldom employed for transmission in radio communication. When they are used in any such
application, it is usually in the receiving mode, such as in portable radios and pagers, where antenna
efficiency is not as important as the signal-to-noise ratio. They are also used as probes for field
measurements and as directional antennas for radiowave navigation. The field pattern of electrically
small antennas of any shape (circular, elliptical, rectangular, square, etc.) is similar to that of an
infinitesimal dipole with a null perpendicular to the plane of the loop and with its maximum along
the plane of the loop. As the overall length of the loop increases and its circumference approaches
one free-space wavelength, the maximum of the pattern shifts from the plane of the loop to the axis
of the loop which is perpendicular to its plane.

The radiation resistance of the loop can be increased, and made comparable to the characteris-
tic impedance of practical transmission lines, by increasing (electrically) its perimeter and/or the
number of turns. Another way to increase the radiation resistance of the loop is to insert, within its
circumference or perimeter, a ferrite core of very high permeability which will raise the magnetic
field intensity and hence the radiation resistance. This forms the so-called ferrite loop.

Electrically large loops are used primarily in directional arrays, such as in helical antennas (see
Section 10.3.1), Yagi-Uda arrays (see Section 10.3.3), quad arrays (see Section 10.3.4), and so on.

Antenna Theory: Analysis and Design, Fourth Edition. Constantine A. Balanis.
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(a) Single element (b) Array of eight elements

Figure 5.1 Commercial loop antenna as a single vertical element and in the form of an eight-element linear
array. (Courtesy: TCI, A Dielectric Company).

For these and other similar applications, the maximum radiation is directed toward the axis of the loop
forming an end-fire antenna. To achieve such directional pattern characteristics, the circumference
(perimeter) of the loop should be about one free-space wavelength. The proper phasing between
turns enhances the overall directional properties.

Loop antennas can be used as single elements, as shown in Figure 5.1(a), whose plane of its
area is perpendicular to the ground. The relative orientation of the loop can be in other directions,
including its plane being parallel relative to the ground. Thus, its mounting orientation will determine
its radiation characteristics relative to the ground. Loops are also used in arrays of various forms.
The particular array configuration will determine its overall pattern and radiation characteristics.
One form of arraying is shown in Figure 5.1(b), where eight loops of Figure 5.1(a) are placed to
form a linear array of eight vertical elements.

5.2 SMALL CIRCULAR LOOP

The most convenient geometrical arrangement for the field analysis of a loop antenna is to position
the antenna symmetrically on the x-y plane, at z = 0, as shown in Figure 5.2(a). The wire is assumed
to be very thin and the current spatial distribution is given by

Iy =1 (5-1)
where I, is a constant. Although this type of current distribution is accurate only for a loop antenna

with a very small circumference, a more complex distribution makes the mathematical formulation
quite cumbersome.

5.2.1 Radiated Fields

To find the fields radiated by the loop, the same procedure is followed as for the linear dipole. The
potential function A given by (3-53) as

14 ;e R
Ax,y,2) = . L& y,2)——dl (5-2)
T C R
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d1'=ad¢,/( \\\\\\'
]

(a) Geometry for circular loop

acosy =a(d, .4,)=
a(sin 6 cos ¢' cos ¢
+ sin 0 sin ¢’ sin ¢)

(b) Geometry for far-field observations

Geometrical arrangement for loop antenna analysis.

is first evaluated. Referring to Figure 5.2(a), R is the distance from any point on the loop to the
observation point and d!’ is an infinitesimal section of the loop antenna. In general, the current spatial
distribution I(x’,y’, Z’) can be written as

Ie(x,7 ylv Z,) = ﬁxlx(-x,7 y,7 Z’) + ﬁyly(-x,’y,7 ZI) + ﬁzlz(x,’ y,9 Z’) (5_3)

whose form is more convenient for linear geometries. For the circular-loop antenna of Figure 5.2(a),
whose current is directed along a circular path, it would be more convenient to write the rectan-
gular current components of (5-3) in terms of the cylindrical components using the transformation
(see Appendix VII)

I cos¢/ —sing/ 07 [/

X
I, | = |sing’ cosg’ 0] |1, (5-4)
L 0 o 1lLzI

z
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which when expanded can be written as

I, =1,cos¢' —I,sin¢’
I, =1,sing’ +1,cos ¢’ (5-5)
I, =1,

Since the radiated fields are usually determined in spherical components, the rectangular unit
vectors of (5-3) are transformed to spherical unit vectors using the transformation matrix given by
(4-5). That is,

a, =4a,sin0cos ¢+ aycoscosd —a,sing
a,=4,sin0sin¢ +4a,cosfsing + 4, cos ¢ (5-6)

a_=4a,cos0 —4,siné
Substituting (5-5) and (5-6) in (5-3) reduces it to

I, =4,[l,sin0 cos(¢p — ¢+ 14 sin 0 sin(¢ — @) +1,cos 0]
+ ﬁe[lp cos 6 cos(¢p — ¢') + Iy cos 0 sin(¢p — ¢ — I,sin 0]
+ ﬁ¢[—1p sin(p — ¢') + 1 cos(¢p — ) (5-7)
allowing for / » I¢ and /, current components.
It should be emphasized that the source coordinates are designated as primed (p’, ¢’, z’) and the

observation coordinates as unprimed (7, 6, ¢). For a very thin wire radius circular loop, the current
is flowing in the ¢ direction (Idv) so that (5-7) reduces to

I, =4a,1,sin0sin(¢ — )+ gl cos 0 sin(¢p — )+ ayly cos(¢p — g (5-8)

The distance R, from any point on the loop to the observation point, can be written as

R=\/(x—x’)2+(y—y’)2+(z—z’)2 (5-9)
Since

x =rsinfcos ¢
y =rsinfsin¢
z=rcosf

P+ +2 =7 (5-10)

X =acos¢’
y =asing’
7=0

2y 42 =
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(5-9) reduces to

R =112 +a®—2arsin@cos(¢p — ¢') (5-11)

By referring to Figure 5.2(a), the differential element length is given by

dl =ad¢’ (5-12)

Using (5-8), (5-11), and (5-12), the ¢-component of (5-2) can be written as

au 2r e—jk\/ r2+a2—2ar sin 0 cos(¢p—¢’)

_ 4K Y
A¢_47[ ; Iy cos(p—¢)

d¢’' (5-13)

V12 + a2 = 2arsin 6 cos(¢p — ¢')

Since the spatial current /; as given by (5-1) is constant, the field radiated by the loop will not be
a function of the observation angle ¢. Thus any observation angle ¢ can be chosen; for simplicity
¢ = 0. Therefore (5-13) reduces to

d¢’ (5-14)

aulo 27 , e_jk\/r2+a2—2ar sin @ cos ¢’
Ay = T cos ¢
T Jo \/r2 +a? —2arsin 0 cos ¢’

The integration of (5-14), for very thin circular loop of any radius, can be carried out and is rep-
resented by a complex infinite series whose real part contains complete elliptic integrals of the first
and second kind while the imaginary part consists of elementary functions [1]. This treatment is
only valid provided the observation distance is greater than the radius of the loop (r > a). Another
very detailed and systematic treatment is that of [2], [3] which is valid for any observation distance
(r < a,r > a) except when the observation point is on the loop itself (r = a, 6 = x/2). The develop-
ment in [2], [3] has been applied to circular loops whose current distribution is uniform, cosinusoidal,
and Fourier cosine series. Asymptotic expansions have been presented in [2], [3] to find simplified
and approximate forms for far-field observations.

Both treatments, [1]—[3], are too complex to be presented here. The reader is referred to the
literature. In this chapter a method will be presented that approximates the integration of (5-14). For
small loops, the function

e~ JkVr2+a>=2arsin 0 cos ¢’

= (5-15)
\/r? +a? — 2arsin 6 cos ¢/
which is part of the integrand of (5-14), can be expanded in a Maclaurin series in a using
f=£0)+f 0+ %f”(o)a2 4ot ﬁf@—”(om"—1 + o (5-15a)
! n—1)!
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where f/(0) = of /dal ,_¢.f" (0) = 0*f /da?| ., and so forth. Taking into account only the first two

terms of (5-15a), or

—jkr
f(0)=<—
r
F(0) = <J—k + %) e*" sin 6 cos ¢’
roor

" '
f =~ [l +a <]— + %) sin 6 cos (i)’] eI
r roor

reduces (5-14) to

auly " ik :
Ay "o cos ¢’ [l +a <]— + l) sin 0 cos d)’] e dg!
4z Jo r roor?

2 .
a uly . k
Ay~ —Z 0 p=jkr <’7 + %2) sin 6

In a similar manner, the r- and #-components of (5-2) can be written as

aul 2r ik )
A,zﬂsinH/ sin ¢’ l+a<J—+l> sin@cosd)'] e qag!
471' 0 r r r2

aul, 2z ik .
Ay =~ _2o cosH/ sin ¢’ [l +a <J— + l) sin @ cos (,b’] e dg’
4 0 r roor2

which when integrated reduce to zero. Thus

2 .
auly _ [jk
A= A, =4, Z St [’7 - rlz] sin 6

kua*l, sin@ .
Kpatip Si [1+ 1 ]e—jkr
Jkr

- ﬁ¢] 4r

Substituting (5-17) into (3-2a) reduces the magnetic field components to

kal, cos 0 .
H =j—2"" [1+ ! ]e—f’“

272 Jkr
2 .
H, = _(ka) Iysin6 L 1 p—
4r Jkr (kr)?

(5-15b)

(5-15¢)

(5-15d)

(5-16)

(5-16a)

(5-16b)

(5-17)

(5-18a)

(5-18b)

(5-18¢)
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Using (3-15) or (3-10) with J = 0, the corresponding electric-field components can be written as

E =Ep=0 (5-19a)
(ka)*I, sin @ 1] _a
E = y— 1 + — JRT -
» =N ol (5-19b)

5.2.2 Small Loop and Infinitesimal Magnetic Dipole

A comparison of (5-18a)—(5-19b) with those of the infinitesimal magnetic dipole indicates that they
have similar forms. In fact, the electric and magnetic field components of an infinitesimal magnetic
dipole of length / and constant “magnetic” spatial current /,, are given by

kI, 1sin 6 1 .
Ey=—j—2— [1+ —|eF* 5-20b
¢ / 4rxr [ +jkr] ¢ ( )
I 1lcos0 )
o= cosO 1t . i oIk (5-20¢)
27nr? jkr

kl,lsin 1 1 )
— 14+ —— —Jkr 5-20d
0 = rnr [ T (kr)2] ¢ (5-20d)

These can be obtained, using duality, from the fields of an infinitesimal electric dipole, (4-8a)—
(4-10c). When (5-20a)—(5-20d) are compared with (5-18a)—(5-19b), they indicate that a magnetic
dipole of magnetic moment I,,,l is equivalent to a small electric loop of radius a and constant electric
current Iy provided that

1,1 = jSoul, (5-21)

where § = za? (area of the loop). Thus, for analysis purposes, the small electric loop can be replaced
by a small linear magnetic dipole of constant current. The geometrical equivalence is illustrated in
Figure 5.2(a) where the magnetic dipole is directed along the z-axis which is also perpendicular to
the plane of the loop.

5.2.3 Power Density and Radiation Resistance

The fields radiated by a small loop, as given by (5-18a)—(5-19b), are valid everywhere except at the
origin. As was discussed in Section 4.1 for the infinitesimal dipole, the power in the region very
close to the antenna (near field, kr < 1) is predominantly reactive and in the far field (kr > 1) is
predominantly real. To illustrate this for the loop, the complex power density

W = 2(E x H*) = $[(8,E,) X (4,H + a,H})]

= (=4, E Hy + 4gE,H) (5-22)
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is first formed. When (5-22) is integrated over a closed sphere, only its radial component given by

(5-22a)

4 : 2
(ka) ,sin” 6 [1 + 1 ]

Wr =n 32 |I()| 2 (k}’)3

contributes to the complex power P,.. Thus

4 2z V3
P, = }é{w. ds = n & |10|2/ / 1+ j—— | sin® 0 do do (5-23)
4 32 o Jo (kr)?

which reduces to

P=1 (%) (i

.1

and whose real part is equal to
P =1 (35 ) Ga)*lfpl? (5-23b)

For small values of kr(kr < 1), the second term within the brackets of (5-23a) is dominant which
makes the power mainly reactive. In the far field (kr > 1), the second term within the brackets
diminishes, which makes the power real. A comparison between (5-23a) with (4-14) indicates a
difference in sign between the terms within the brackets. Whereas for the infinitesimal dipole the
radial power density in the near field is capacitive, for the small loop it is inductive. This is illustrated
in Figure 4.21 for the dipole and in Figures 5.13 and 5.20 for the loop.

The radiation resistance of the loop is found by equating (5-23b) to |I,|*R, /2. Doing this, the
radiation resistance can be written as

4

27 (kS\? c 52
Rr=n<%)(k2a2)2=n?”<7) = 2072 (I) 231’171<F> (5-24)

where S = 7a” is the area and C = 27a is the circumference of the loop. The last form of (5-24)
holds for loops of other configurations, such as rectangular, elliptical, etc. (See Problem 5.30).

The radiation resistance as given by (5-24) is only for a single-turn loop. If the loop antenna has N
turns wound so that the magnetic field passes through all the loops, the radiation resistance is equal
to that of single turn multiplied by N2. That is,

27\ (kS\?2 C
b= () () w0 ()
r=1\37)\% X

Even though the radiation resistance of a single-turn loop may be small, the overall value can be
increased by including many turns. This is a very desirable and practical mechanism that is not
available for the infinitesimal dipole.

4 SZ
N? ~ 31,171 N? <F> (5-24a)
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Example 5.1

Find the radiation resistance of a single-turn and an eight-turn small circular loop. The radius of
the loop is A/25 and the medium is free-space.
Solution:

A >2_ %

S=na=r(—) =22
ra ”<25 625

R (@ 1etum)—120n<2—”) 202N e ohoms
r SIS - 3 /)\625) =

R, (8 turns) = 0.788(8)2 = 50.43 ohms

The radiation and loss resistances of an antenna determine the radiation efficiency, as defined by
(2-90). The loss resistance of a single-turn small loop is, in general, much larger than its radiation
resistance; thus the corresponding radiation efficiencies are very low and depend on the loss resis-
tance. To increase the radiation efficiency, multiturn loops are often employed. However, because
the current distribution in a multiturn loop is quite complex, great confidence has not yet been placed
in analytical methods for determining the radiation efficiency. Therefore greater reliance has been
placed on experimental procedures. Two experimental techniques that can be used to measure the
radiation efficiency of a small multiturn loop are those that are usually referred to as the Wheeler
method and the Q method [4].

Usually it is assumed that the loss resistance of a small loop is the same as that of a straight wire
whose length is equal to the circumference of the loop, and it is computed using (2-90b). Although
this assumption is adequate for single-turn loops, it is not valid for multiturn loops. In a multiturn
loop, the current is not uniformly distributed around the wire but depends on the skin and proximity
effects [5]. In fact, for close spacings between turns, the contribution to the loss resistance due to the
proximity effect can be larger than that due to the skin effect.

The total ohmic resistance for an N-turn circular-loop antenna with loop radius a, wire radius b,
and loop separation 2¢, shown in Figure 5.3(a) is given by [6]

Na R,
Rohmic = 7Rx <R_O + 1> (5-25)
where
WHy .
R, = e = surface impedance of conductor

R, = ohmic resistance per unit length due to proximity effect

NR
Ry = 3 l; = ohmic skin effect resistance per unit length (ohms/m)
T

The ratio of R,/R,, has been computed [6] as a function of the spacing ¢/b for loops with2 <N < 8
and it is shown plotted in Figure 5.3(b). It is evident that for close spacing the ohmic resistance is
twice as large as that in the absence of the proximity effect (R,/R, = 0).
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2b

(a) N-turn circular loop

2.5

20k N = number of wires

R, = added resistance due to proximity effect

R = resistance neglecting proximity effect

1.0 1.5 2.0 3.0 4.0 5.0
Spacing ¢/b

(b) Ohmic resistance due to proximity (after G. N. Smith)

N-turn circular loop and ohmic resistance due to proximity effect. (SOURCE: G. S. Smith, “Radia-
tion Efficiency of Electrically Small Multiturn Loop Antennas,” IEEE Trans. Antennas Propagat., Vol. AP-20,
No. 5, September, pp. 656-657. 1972 ©) 1972 IEEE).

Example 5.2

Find the radiation efficiency of a single-turn and an eight-turn small circular loop at f =
100 MHz. The radius of the loop is A/25, the radius of the wire is 107\, and the turns are
spaced 4 x 107\ apart. Assume the wire is copper with a conductivity of 5.7 x 107(S/m) and
the antenna is radiating into free-space.

Solution: From Example 5.1

R, (single turn) = 0.788 ohms
R, (8 turns) = 50.43 ohms

The loss resistance for a single turn is given, according to (2-90b), by

R =R, =% [P _ 1 7(10%)(47 x 1077)
LT TV 26 T 250107 5% 107

= 1.053 ohms
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and the radiation efficiency, according to (2-90), by
0.788
Cd = G788 4 1,053 A28 =42.8%
From Figure 5.3(b)
R
L =038
Ry
and from (5-25)
8 7(108)(47z x 1077)
R =R, . = 1.38) = 11.62
L= Tohmic 25(10-4)\/ sTx107 U0
Thus
50.43
=—— =0.813=81.3%
“ed = 5043+ 11.62 ‘

5.2.4 Near-Field (kr < 1) Region

The expressions for the fields, as given by (5-18a)—(5-19b), can be simplified if the observations
are made in the near field (kr <« 1). As for the infinitesimal dipole, the predominant term in each
expression for the field in the near-zone region is the last one within the parentheses of (5-18a)—
(5-19b). Thus for kr <« 1

aZIOe—jkr
H, ~ 5 cos @ (5-26a)
. aZIOe—jkr -
~ ————sin
0 473 s kr < 1 (5-26b)
Hy=E =E;=0 (5-26¢)
aklye 7k
Ey ~ —]# sin 0 (5-26d)

The two H-field components are in time-phase. However, they are in time quadrature with those of
the electric field. This indicates that the average power (real power) is zero, as is for the infinitesimal
electric dipole. The condition of kr < 1 can be satisfied at moderate distances away from the antenna
provided the frequency of operation is very low. The fields of (5-26a)—(5-26d) are usually referred
to as quasi-stationary.

5.2.5 Far-Field (kr > 1) Region

The other space of interest where the fields can be approximated is the far-field (k» > 1) region. In
contrast to the near field, the dominant term in (5-18a)—(5-19b) for kr > 1 is the first one within
the parentheses. Since for kr > 1 the H, component will be inversely proportional to > whereas H,
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will be inversely proportional to r. For large values of kr(kr > 1), the H, component will be small
compared to Hy. Thus it can be assumed that it is approximately equal to zero. Therefore for kr > 1,

kZGZIOe—jkr ) ﬂSIoe_jkr )
H0 = _—r sinf = —T sin 0 (5-273)
. ) kr>1
E Ka*lye 7 0 aSlye % 0
o SN ST (5-27b)
H, ~ H¢ =E.=Ey=0 (5-27¢)

where S = 7a? is the geometrical area of the loop.
Forming the ratio of —E/H,, the wave impedance can be written as

PR 5-28
w__Fg—rl (5-28)

where
Z,, = wave impedance

n = intrinsic impedance

As for the infinitesimal dipole, the E- and H-field components of the loop in the far-field (kr > 1)
region are perpendicular to each other and transverse to the direction of propagation. They form a
Transverse Electro Magnetic (TEM) field whose wave impedance is equal to the intrinsic impedance
of the medium. Equations (5-27a)—(5-27¢) can also be derived using the procedure outlined and
relationships developed in Section 3.6. This is left as an exercise to the reader (Problem 5.9).

5.2.6 Radiation Intensity and Directivity

The real power P,  radiated by the loop was found in Section 5.2.3 and is given by (5-23b). The
same expression can be obtained by forming the average power density, using (5-27a)—(5-27¢), and
integrating it over a closed sphere of radius r. This is left as an exercise to the reader (Problem 5.8).
Associated with the radiated power P,  is an average power density W, . It has only a radial com-
ponent W, which is related to the radiation intensity U by

2 n(KRa*\’ 2.2 r 2
U=rW, =3 (=5~ ) Vol sin®0 = £ 1E,(.0,9) (5-29)

and it conforms to (2-12a). The normalized pattern of the loop, as given by (5-29), is identical to
that of the infinitesimal dipole shown in Figure 4.3. The maximum value occurs at § = 7 /2, and it
is given by

a2\
Unax = Ulp=r2 = g <Ta> o] (5-30)

Using (5-30) and (5-23b), the directivity of the loop can be written as

D0=4ﬂ%=§

5-31
rad 2 ( )
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and its maximum effective area as

22 3n2
Aem = <E> DQ = g (5-32)

It is observed that the directivity, and as a result the maximum effective area, of a small loop is
the same as that of an infinitesimal electric dipole. This should be expected since their patterns
are identical.

The far-field expressions for a small loop, as given by (5-27a)—(5-27c), will be obtained by
another procedure in the next section. In that section a loop of any radius but of constant current
will be analyzed. The small loop far-field expressions will then be obtained as a special case of
that problem.

Example 5.3
The radius of a small loop of constant current is A/25. Find the physical area of the loop and
compare it with its maximum effective aperture.
Solution:

2 2
S@mmm=nf=n(%)=g%=5mxuﬁﬁ
2
A, =X _ 01192
87
A 2
e _ O

S T 5.03x 10322

Electrically the loop is about 24 times larger than its physical size, which should not be surprising.
To be effective, a small loop must be larger electrically than its physical size.

5.2.7 Equivalent Circuit

A small loop is primarily inductive, and it can be represented by a lumped element equivalent circuit
similar to those of Figure 2.28.

A. Transmitting Mode

The equivalent circuit for its input impedance when the loop is used as a transmitting antenna is that
shown in Figure 5.4. This is similar to the equivalent circuit of Figure 2.28(b). Therefore its input
impedance Z;, is represented by

Ziy = Ry + X = (R, + Rp) +j(Xy + X)) (5-33)

where
R, = radiation resistance as given by (5-24)

R; =loss resistance of loop conductor
X, = external inductive reactance of loop antenna = wL,

X; = internal high-frequency reactance of loop conductor = wL;
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g
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Figure 5.4 Equivalent circuit of loop antenna in transmitting mode.

In Figure 5.4 the capacitor C, is used in parallel to (5-33) to resonate the antenna; it can also
be used to represent distributed stray capacitances. In order to determine the capacitance of C, at
resonance, it is easier to represent (5-33) by its equivalent admittance Y;, of

1 1

Y =G, +/B, = — = —— 5-34
" in T JBin Zin Rin +inn ( )
where
Rin
Y= — (5-34a)
"R 4+ X2
m m
_ Xi 4
"R X (330
in in

At resonance, the susceptance B, of the capacitor C, must be chosen to eliminate the imaginary part
B;, of (5-34) given by (5-34b). This is accomplished by choosing C, according to

Br Bin 1 Xin
r= = — = (5_35)
2zf  2zf  2af R} + X

m

c

Under resonance the input impedance Zlfn is then equal to

Z/ _Rl_ 1 _Ri2n+Xi2n_R Xl2n 5-36
n=Rn=G-="g “Ratyp (5-36)

in in

The loss resistance R; of the loop conductor can be computed using techniques illustrated in
Example 5.2. The inductive reactance X, of the loop is computed using the inductance L, [7] of:

Circular loop of radius a and wire radius b:

Ly = ga [In (%) -2] (5-37a)

Square loop with sides a and wire radius b:

a a
L,=2 —[1 (— —0.774] 5-37b
2 =20 [in (%) (5:37b)
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(b) Thevenin equivalent

(a) Plane wave incident on a receiving loop (G.S. Smith, “Loop Antennas,”
Copyright © 1984, McGraw-Hill, Inc. Permission by McGraw-Hill, Inc.)

Figure 5.5 Loop antenna and its equivalent in receiving mode.

The internal reactance of the loop conductor X; can be found using the internal inductance L; of the
loop which for a single turn can be approximated by

l WUy a (7N .
Li=—\ [ — = —/— lar 1 -
7\ 2 v o Circular loop (5-38a)

_ L [om _ 20 [om _
L= 2V 2% — oV 2 Square loop (5-38b)

where [ is the length and P is the perimeter (circumference) of the cross section of the wire of the loop.

B. Receiving Mode

The loop antenna is often used as a receiving antenna or as a probe to measure magnetic flux density.
Therefore when a plane wave impinges upon it, as shown in Figure 5.5(a), an open-circuit voltage
develops across its terminals. This open-circuit voltage is related according to (2-93) to its vector
effective length and incident electric field. This open-circuit voltage is proportional to the incident
magnetic flux density B;, which is normal to the plane of the loop. Assuming the incident field is
uniform over the plane of the loop, the open-circuit voltage for a single-turn loop can be written
as [8]

V

[

(5-39)

— 7 2 pi
¢ =Jjona"B;

Defining in Figure 5.5(a) the plane of incidence as the plane formed by the z axis and radial vector,
then the open-circuit voltage of (5-39) can be related to the magnitude of the incident magnetic and
electric fields by

Ve =jw7ra2yOHi cosy;sinf; = jkoﬂain cos y; sin 0, (5-39a)

where y; is the angle between the direction of the magnetic field of the incident plane wave and the
plane of incidence, as shown in Figure 5.5(a).
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Since the open-circuit voltage is also related to the vector effective length by (2-93), then the
effective length for a single-turn loop can be written as

Co=ayl, = ﬁ¢jko7ra2 cos y; sin0; = a,jkoS cos y; sin 0; (5-40)

where S is the area of the loop. The factor cos y; sin 6; is introduced because the open-circuit voltage
is proportional to the magnetic flux density component Bi which is normal to the plane of the loop.

When a load impedance Z; is connected to the output terminals of the loop as shown in
Figure 5.5(b), the voltage V; across the load impedance Z; is related to the input impedance Zl.’n
of Figure 5.5(b) and the open-circuit voltage of (5-39a) by

ZL
vV, =V (5-41)

7 +7;

mn

5.3 CIRCULAR LOOP OF CONSTANT CURRENT

Let us now reconsider the loop antenna of Figure 5.2(a) but with a radius that may not necessarily be
small. The current in the loop will again be assumed to be constant, as given by (5-1). For this current
distribution, the vector potential is given by (5-14). The integration in (5-14) is quite complex, as is
indicated right after (5-14). However, if the observation are restricted in the far-field (r > a) region,
the small radius approximation is not needed to simplify the integration of (5-14).

Although the uniform current distribution along the perimeter of the loop is only valid provided
the circumference is less than about 0.2A (radius less than about 0.032), the procedure developed
here for a constant current can be followed to find the far-zone fields of any size loop with not
necessarily uniform current.

5.3.1 Radiated Fields

To find the fields in the far-field region, the distance R can be approximated by

R=+\r2+a?—2arsinfcos¢’ ~ \/r2 —2arsinfcos¢’ for r>>a (5-42)

which can be reduced, using the binomial expansion, to

R~ r\/l _2a sinfcos¢’ =r—asinfcosd’ =r—acosy,
r
for phase terms (5-43)

R~r for amplitude terms

since

cosyy =4’ - 4,]g_o = (a,cos ' +a,sing)
(4, sinfcos +a,sinfsing +a,cos ),

= sin6 cos ¢’ (5-43a)
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Figure 5.6  Geometry for far-field analysis of a loop antenna.

The geometrical relation between R and r, for any observation angle ¢ in the far-field region, is
shown in Figure 5.2(b). For observations at ¢p = 0, it simplifies to that given by (5-43) and shown in
Figure 5.6. Thus (5-14) can be simplified to

aplye*

2z
A¢ ~ / cos ¢Ie+jktlsin0COS¢, d¢/ (5_44)
0

drr

and it can be separated into two terms as

aulye *r

4 2r
. , I f
A¢ ~ [/ cos ¢l€+]ku sin @ cos ¢ d(f), + / cos ¢/g+jka sin @ cos ¢ d(l)’
0 T

drr
(5-45)

The second term within the brackets can be rewritten by making a change of variable of the form
¢ =¢"+x (5-46)
Thus (5-45) can also be written as

~ aﬂl()e_jkr " ! +jkasin6 cos ¢’ ’ " 11 —jkasin 6 cos ¢’ dé’’
A¢_— A cosge d¢’ — A cosg e ¢

drr
(5-47)

Each of the integrals in (5-47) can be integrated by the formula (see Appendix V)

7" (2) = / i cos(ng)e™ > dg (5-48)
0
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where J,,(2) is the Bessel function of the first kind of order n. Using (5-48) reduces (5-47) to

apulye I+

o= ——I=jJ; (kasin @) — njJ(—kasin )] (5-49)
drr

The Bessel function of the first kind and order # is defined (see Appendix V) by the infinite series

J,(2) = Za %Z—/fz; (5-50)
By a simple substitution into (5-50), it can be shown that
Ju(=2) = (=1)"J,(2) (5-51)
which for n = 1 is equal to
Ji(=2) = -J1(2) (5-52)
Using (5-52) we can write (5-49) as
aulye ™ .
Ay zJTJl (ka sin 0) (5-53)

The next step is to find the E- and H-fields associated with the vector potential of (5-53). Since
(5-53) is only valid for far-field observations, the procedure outlined in Section 3.6 can be used. The
vector potential A, as given by (5-53), is of the form suggested by (3-56). That is, the r variations
are separable from those of 6 and ¢. Therefore, according to (3-58a)—(3-58b) and (5-53)

E ~E,=0 (5-54a)
aknlye % )
Ey~ ———1J(kasin0) (5-54b)
Hy = Hy =0 (5-54c)
Hym 2 e
o= =5 = T, Nilkasing) (5-54d)

5.3.2 Power Density, Radiation Intensity, Radiation Resistance, and Directivity

The next objective for this problem will be to find the power density, radiation intensity, radiation
resistance, and directivity. To do this, the time-average power density is formed. That is,

1 o Lo o |
Way = SRe[Ex H'] = ZRe[dyEy X agH;| = a,Z|E¢|2 (5-55)

which can be written using (5-54b) as

(awp)*|1y|*

S J,%(ka sin 0) (5-56)

Wav = aerr =a,
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Elevation plane amplitude patterns for a circular loop of constant current (@ = 0.1A, 0.2, and 0.52).

with the radiation intensity given by

21712
U=rW, = %Jﬂ(ka sin 0) (5-57)
The 2-D radiation patterns fora = A/10,A/5, and A./2, based on a uniform current distribution, are
shown in Figure 5.7. These patterns indicate that the field radiated by the loop along its axis (6 = 0°)
is zero. Also the shape of these patterns is similar to that of a linear dipole with / < A (a figure-eight
shape). As the radius a increases beyond 0.5), the field intensity along the plane of the loop (6 = 90°)
diminishes and eventually it forms a null when a ~ 0.61A. This is left as an exercise to the reader
for verification (Prob. 5.21). Beyond a = 0.61A, the radiation along the plane of the loop begins to
intensify and the pattern attains a multilobe form.
Three-dimensional patterns for loop circumferences of C = 0.1A and 5\, assuming a uniform
current distribution, are shown in Figure 5.8. It is apparent that for the 0.1 circumference the pattern
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Figure 5.8 Three-dimensional amplitude patterns of a circular loop with constant current distribution.
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is basically that of figure eight (sin ), while for the 5A loop it exhibits multiple lobes. The multiple
lobes in a large loop begin to form when the circumference exceeds about 3.83A (radius exceeds
about 0.61)); see Problem 5.21.

The patterns represented by (5-57) (some of them are illustrated in Figure 5.7) assume that the
current distribution, no matter what the loop size, is constant. This is not a valid assumption if the loop
circumference C(C = 2za) exceeds about 0.2\ (i.e., a > 0.032%) [9]. For radii much greater than
about 0.032A, the current variation along the circumference of the loop begins to attain a distribution
that is best represented by a Fourier series [9]. Although a most common assumption is that the
current distribution is nearly cosinusoidal, it is not physical and satisfactory particularly near the
driving point of the antenna.

A uniform and nonuniform in-phase current distribution can be attained on a loop antenna even if
the radius is large. To accomplish this, the loop is subdivided into sections, with each section/arc of
the loop fed with a different feed line; all feed lines are typically fed from a common feed source. Such
an arrangement, although more complex, can approximate either uniform or nonuniform in-phase
current distribution.

It has been shown [10] that when the circumference of the loop is about one wavelength (C =~ 1),
its maximum radiation based on a nonuniform current distribution is along its axis (0 = 0°, 180°)
which is perpendicular to the plane of the loop. This will also be discussed in Section 5.4 that fol-
lows. Feature of the loop antenna has been utilized to design Yagi-Uda arrays whose basic elements
(feed, directors, and reflectors) are circular loops [11]—[14]. Because of its many applications,
the one-wavelength circumference circular-loop antenna is considered as fundamental as a half-
wavelength dipole.

The radiated power can be written using (5-56) as

2 1 2
P = / / W, - d 2”(“‘”2’; ol /0 J,2(kasin 6) sin 6 o (5-58)

The integral in (5-58) can be rewritten [15] as

4 1 2ka
/ J,2(kasin 0)sin 6 do = — / Jo(x) dx (5-59)
0 ka Jo

The evaluation of the integral of (5-59) has been the subject of papers [16]—[19]. In these refer-
ences, along with some additional corrections, the integral of (5-59)

y3 2ka
0\ (ka) = £ / 2 (kasin 0) sin 0 do = % / 1,0 dx (5-59a)
0 a Jo

can be represented by a series of Bessel functions [20]

0} (ka) = — T Z Jom+3(2ka) (5-59b)
m=0

where J,,(x) is the Bessel function of the first kind, mth order. This is a highly convergent series
(typically no more than 2ka terms are necessary), and its numerical evaluation is very efficient.
Approximations to (5-59) can be made depending upon the values of the upper limit (large or small
radii of the loop).
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A. Large Loop Approximation (a > \/2)

To evaluate (5-59), the first approximation will be to assume that the radius of the loop is large
(a > \/2). For that case, the integral in (5-59) can be approximated by

b4 1 2ka 1
/ J,2(kasin0)sin 6 do = — / Jo(x) dx ~ — (5-60)
0 ka 0 ka

and (5-58) by

a(awp)®|I|?

~ 5-61
= ntka) rob
The maximum radiation intensity occurs when ka sin @ = 1.84 so that
(awp)*|I|? . (awp)*|I|?
Ulmax = Tﬂjlz(ka s 9)|kasin0=1‘84 = —0(0582)2 (5'62)
Thus
2P 2 2
R = —md _ 2rlaon ( 1) ka = 6072 (ka) = 60> (9> (5-63a)
INE 4n(ka) 2 A
Uy, .582)%
Dy = dramax _ 4, kOS82 _ 0,580 = 0.677 (9) (5-63b)
Prad 27[ )\.
2 2
A, =2 p,=2 |0.677 (9)] =539 % 10720C (5-63¢)
4 dr A

where C(circumference) = 2za and n ~ 120x.

B. Intermediate Loop Approximation (\/6x < a < \/2)

If the radius of the loop is A/(67) = 0.053\ < a < A/2, the integral of (5-59) for Q(lll) (ka) is approx-
imated by (5-59a) and (5-59b), and the radiation resistance and directivity can be expressed, respec-
tively, as

2P
= |Ir|a2d = na(ka)*Q\\) (ka) (5-64a)
0
Dy = 4 Upas _ Fy(ka) (5-64b)
Pra 0\ (ka)
where
J3(1.840) = (0.582)% = 0.339 (5-64¢)
. ka > 1.840 (a > 0.293)
Fyka) = Jkasin )l =4 (@ )
1
ka < 1.840 (a < 0.293)) (5-64d)

C. Small Loop Approximation (a < \/67x)
If the radius of the loop is small (@ < A/67x), the expressions for the fields as given by (5-54a)—
(5-54d) can be simplified. To do this, the Bessel function J;(ka sin €) is expanded, by the definition
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of (5-50), in an infinite series of the form (see Appendix V)

Jy(kasin ) = 3 (kasin ) — 1 (kasin ) + - (5-65)

For small values of ka(ka < %), (5-65) can be approximated by its first term, or

J,(kasin ) ~ ka Szm 0 (5-652)

Thus (5-54a)—(5-54d) can be written as

Er ad E9 =0

(5-66a)

awuklye " Al lye *r
= —————sinf = p————sin 6 (5-66b)

4r ar - a<M\N6m

H,~H;, =0 (5-66¢)

2 kI —jkr 2k2] —jkr

4nr 4r

which are identical to those of (5-27a)—(5-27c¢). Thus the expressions for the radiation resistance,
radiation intensity, directivity, and maximum effective aperture are those given by (5-24), (5-29),

(5-31), and (5-32).

To demonstrate the variation of the radiation resistance as a function of the radius a of the loop, it
is plotted in Figure 5.9 for /100 < a < /30 using (5-24), based on the approximation of (5-65a).

Radiation resistance R, (ohms)

9

S
s

1073

T TIIIII‘

T TTTTTTd T

1
A/100 /90

1 1 1 1 1 1 1

1 I
A/70 A/60 M50

Radius a

1 1 ]
/80 A/40 30

Figure 5.9 Radiation resistance for a constant current circular-loop antenna based on the approximation of

(5-65a).
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Radiation resistance and directivity for circular loop of constant current. (SOURCE: E. A. Wolff,
Antenna Analysis, Wiley, New York, 1966).

It is evident that the values are extremely low (less than 1 ohm), and they are usually smaller than
the loss resistances of the wires. These radiation resistances also lead to large mismatch losses when
connected to practical transmission lines of 50 or 75 ohms. To increase the radiation resistance, it
would require multiple turns as suggested by (5-24a). This, however, also increases the loss resistance
which contributes to the inefficiency of the antenna. A plot of the radiation resistance for 0 < ka =
C/\ < 20, based on the evaluation of (5-59) by numerical techniques, is shown in Figure 5.10. The
dashed line represents (5-63a) based on the large loop approximation of (5-60) and the dotted (- - - - - )
represents (5-24) based on the small loop approximation of (5-65a).

In addition to the real part of the input impedance, there is also an imaginary component which
would increase the mismatch losses, even if the real part is equal to the characteristic impedance of
the lossless transmission line. However, the imaginary component can always, in principle at least,
be eliminated by connecting a reactive element (capacitive or inductive) across the terminals of the
loop, as shown in Figure 5.4, to make the antenna a resonant circuit.

To facilitate the computations for the directivity and radiation resistance of a circular loop with
a constant current distribution, a MATLAB and FORTRAN computer program has been developed.
The program utilizes (5-62) and (5-58) to compute the directivity [(5-58) is integrated numeri-
cally]. The program requires as an input the radius of the loop (in wavelengths). A Bessel function
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subroutine is contained within the FORTRAN program. A listing of the program is included in the
CD attached with the book.

5.4 CIRCULAR LOOP WITH NONUNIFORM CURRENT

The analysis in the previous sections was based on a uniform current, which would be a valid approx-
imation when the radius of the loop is small electrically (usually about a < 0.032)). As the dimen-
sions of the loop increase, the current variations along the circumference of the loop must be taken
into account.

A common assumption is a cosinusoidal variation for the current distribution [21], [22]. This,
however, is not a physical and satisfactory representation, particularly near the driving point [9]. A
better distribution would be to represent the current by a Fourier series, based on a delta gap voltage
V across an infinitesimal gap at ¢’ = 0 on the loop, and represented by [23]-[26]:

& 2 Vs (¢ it !
1¢)= 3, 1" =Y 1,costn¢)) = .(¢) li+22wsi—n¢)] (5-67)

n=-00 n=0 J7Mo o n=1 n

where 6(¢’) = delta function, 7y = 377 ohms, and ¢’ is measured from the feed point of the loop
along the circumference, as shown in the inset of Figure 5.11.

A complete analysis of the fields radiated by a loop with nonuniform current distribution of
(5-67) is somewhat complex and quite lengthy [2], [3]. Instead of attempting to include the ana-
Iytical formulations, which are advanced but well documented in the cited references, a summary
will be presented along with number of graphical illustrations of numerical and experimental data.
These curves can be used in facilitating designs.

Based on the current distribution of (5-67), it is shown in [2] that the far-zone electric fields
radiated by the loop are represented by

—jkr e
14 ;(’t 0¢ 2 n— " sin(n)J, (kasin 0) (5-68a)
T

n

EQN

—jkr
Vk“ ¢ cos(nc;b)]’ (ka sin 0) (5-68b)

E¢z

where c,, is evaluated using (5-70a) of page 262.

To illustrate that the current distribution of a wire loop antenna is not uniform unless its radius
is very small, the magnitude and phase of it have been plotted in Figure 5.11 as a function of ¢’ (in
degrees). The loop circumference C is ka = C/\ = 0.05,0.1, 0.2, 0.3, and 0.4 and the wire radius
was chosen so that Q = 21In(2za/b) = 10. It is apparent that for ka = 0.2 the current is nearly uni-
form. For ka = 0.3 the variations are slightly greater and become even larger as ka increases. On the
basis of these results, loops much larger than ka = 0.2 (radius much greater than 0.032) cannot be
considered small.

The maximum of the far-field radiation pattern shifts from 6 = 90° [x-y plane; Figure 5.8(a) for
small loop, C = 0.1\, with uniform current] to 8 = 0°, 180° (for large loops with nonuniform cur-
rent). Evidence that this shift occurs was computed using 3-D and 2-D patterns (elevation plane for
¢ =0°,45°, and 90°), based on (5-68a) and (5-68b), for a circular loop of C = A. These results are
displayed in Figure 5.12. As is apparent from the 3-D and 2-D patterns of Figure 5.12, the maximum
is along 0 = 0° and 180°. The three 2-D elevation plane patterns of Figure 5.12(b) are not identical,
as they should not be, because the current distribution is not uniform along its circumference; they
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are identical if the current distribution is uniform for loops of small radii (radius less than about
0.032)).

As was indicated above, the maximum of the pattern for a loop antenna shifts from the plane of the
loop (6 = 90°) toits axis (§ = 0°, 180°) as the circumference of the loop approaches one wavelength,
as the current changes from uniform to nonuniform. Based on the nonuniform current distribution
of (5-67), the directivity of the loop along 8 = 0° has been computed, and it is plotted in Figure 5.13
versus the circumference of the loop in wavelengths. The maximum directivity is about 4.63 dB,
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Figure 5.12  Far-field normalized three- and two-dimensional amplitude patterns for a loop with C = A and
Q =10.



262 LOOP ANTENNAS

5
Q C/A=ka | D (dB)
ar 8 1.48 4626
3t 10 1.45 4.592
a 5l 12 1.43 4.523
A
= 20 1.39 4354
= 1
8
]
A Or Q C/A=ka | D (dB)
gt 8 1 3.344
10 1 3.412
2t
12 1 3.442
-3 L L L L L L L L Lty
02 04 06 08 1 12 14 16 18 2 20 1 3.476

C/\= ka (circumference in wavelengths)

Figure 5.13  Directivity of circular-loop antenna for 8 = 0, = versus electrical size (C /).

and it occurs when the circumference is about 1.48\. For a one-wavelength circumference, which
is usually the optimum design for a helical antenna, the directivity is about 3.476 dB for Q = 20. It
is also apparent that the directivity is basically independent of the radius of the wire, as long as the
circumference is equal or less than about 1.3 wavelengths; there are differences in directivity as a
function of the wire radius for greater circumferences.

While the maximum directivity toward 8 = 0°, 180° is displayed in Figure 5.13, the overall
maximum directivity may not occur along 6 = 0°, 180° for all radii of the loop. For example, for
small radii loops the maximum directivity occurs along 6 = 90°, and it is equal to 1.5 (1.76 dB).
To find the overall maximum directivity, a search procedure was employed over all observation
angles (0° < 0 < 180°, 0° < ¢ <360°) for Q = 8 — 12, and the results are displayed in Figure 5.14.
As can be seen, the maximum overall directivity of Q =8 — 12 occurs for Q =8, C = 1.6, it is
equal to 4.88 dB, which is about 0.25 dB greater than the corresponding one along 8 = 0°, 180° of
Figure 5.13.

The input impedance Z;, at ¢’ = 0 is given by

z,=—210 ! (5-69)

where Z, = jrnycy and Z, = jzng (C,,/2). In both (5.67) and (5-69), the maximum number of terms
needed for the infinite summation to converge is the maximum value of either 5 or 3ka; that is, the
max number is max[5, 3ka] [27].

When the loop is a perfect electric conductor and the wire radius b is much smaller than the radius
a of the loop (b < a), the coefficients are represented by [25], [26]:

o
|
o
Il

N, . +N,_ 2
m(JﬂTJJ>—lN (5-70a)
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Figure 5.14  Circular loop maximum directivity as a function of circumference.

p—1
C,=In(4n)+y -2 1/2p+ 1) and y = 0.5772 (Euler’s constant). The zero order term for N,

p=0
reduces to

2ka
No=-Ln (8—“> _1 / [Q(x) + o ()1dx (5-71)
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where

Q, (x) : Lommel-Weber function

J,(x) : Bessel function of the first kind

Ix)=1+ O(x?) =~ 1: modified Bessel function of the first kind

Ko(x) = —=(In(x/2) + y)IH(x) + O(x*) = —In(x/2) — y: modified Bessel function of the second kind

The preceding equations are commonly used to find the input impedance of a circular loop
antenna. Recently, an RCL representation was proposed to solve this problem using an equivalent
circuit model [28], [29]. One of the objectives of this new method is to demonstrate that each natural
mode of the loop can be represented as a series of resonant circuits; thus, the overall performance of
the circular loop is obtained by combining the modal impedances in parallel. In using this analogy,
it is easier to understand intuitively the impedance of a circular loop antenna.

Computed impedances from (5-67), based on the Fourier series representation of the current, are
shown plotted in Figure 5.15. The input resistance and reactance are plotted as a function of the
circumference C (in wavelengths) for 0 < ka = C/\ < 2.5. The diameter of the wire was chosen so
that Q = 2In(2za/b) = 8,9, 10, 11, and 12. It is apparent that the first antiresonance occurs when the
circumference of the loop is about A /2, and it is extremely sharp. It is also noted that as the loop wire
increases in thickness, there is a rapid disappearance of the resonances. As a matter of fact, for Q < 9
there is only one antiresonance point. These curves (for C > ) are similar, both qualitatively and
quantitatively, to those of a linear dipole. The major difference is that the loop is more capacitive (by
about 130 ohms) than a dipole. This shift in reactance allows the dipole to have several resonances
and antiresonances while moderately thick loops (2 < 9) have only one antiresonance. Also small
loops are primarily inductive while small dipoles are primarily capacitive. The resistance curves for
the loop and the dipole are very similar.
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To verify the analytical formulations and the numerical computations, loop antennas were built
and measurements of impedance were made [9]. The measurements were conducted using a half-
loop over an image plane, and it was driven by a two-wire line. An excellent agreement between
theory and experiment was indicated everywhere except near resonances where computed conduc-
tance curves were slightly higher than those measured. This is expected since ohmic losses were
not taken into account in the analytical formulation. It was also noted that the measured susceptance
curve was slightly displaced vertically by a constant value. This can be attributed to the “end effect”
of the experimental feeding line and the “slice generator” used in the analytical modeling of the feed.
For a dipole, the correction to the analytical model is usually a negative capacitance in shunt with
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the antenna [30]. A similar correction for the loop would result in a better agreement between the
computed and measured susceptances. Computations for a half-loop above a ground plane were also
performed by J. E. Jones [31] using the Moment Method.

The radiation resistance and maximum directivity of a loop antenna with a cosinusoidal current
distribution /(¢p) = I, cos ¢ was derived in [2], [16] and evaluated by integrating in far-zone fields.
Doing this, the values are plotted, respectively, in Figures 5.16(a,b) where they are compared with
those based on a uniform and nonuniform current distribution.
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Figure 5.16  Radiation resistance (R,) and maximum directivity (D) of a circular loop with uniform, cosinu-
soidal and nonuniform current distributions.
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A general Matlab computer program Circular_Loop_Nonuniform has been developed to com-
pute the following current distributions for uniform, cosinusoidal, and Fourier series:

e Current distribution, based on (5-67)

Input impedance, based on (5-69)

Far-field amplitude radiation pattern, based on (5-68a), (5-68b)
¢ Directivity pattern (in dB)

e Maximum directivity (dimensionless and in dB)

The uniform (n = 0) and cosinusoidal (n = 1) current distributions are treated as special cases of the
Fourier series distribution. The Matlab program was advanced by the Matlab programs written by
A. F. McKinley and associates, based on [28], [29], and made available to this author. The programs
by A. F. McKinley are more general while the one in this book is included to primarily aid the reader
in computing the parameters listed above.

5.4.1 Arrays

In addition to being used as single elements and in arrays, as shown in Figure 5.1(a,b), there are some
other classic arrays of loop configurations. Two of the most popular arrays of loop antennas are the
helical antenna and the Yagi-Uda array. The loop is also widely used to form a solenoid which in
conjunction with a ferrite cylindrical rod within its circumference is used as a receiving antenna and
as a tuning element, especially in transistor radios. This is discussed in Section 5.7.

The helical antenna, which is discussed in more detail in Section 10.3.1, is a wire antenna, which
is wound in the form of a helix, as shown in Figure 10.13. It is shown that it can be modeled approx-
imately by a series of loops and vertical dipoles, as shown in Figure 10.15. The helical antenna
possesses in general elliptical polarization, but it can be designed to achieve nearly circular polar-
ization. There are two primary modes of operation for a helix, the normal mode and the axial mode.
The helix operates in its normal mode when its overall length is small compared to the wavelength,
and it has a pattern with a null along its axis and the maximum along the plane of the loop. This
pattern (figure-eight type in the elevation plane) is similar to that of a dipole or a small loop. A heli-
cal antenna operating in the normal mode is sometimes used as a monopole antenna for mobile
cell and cordless telephones, and it is usually covered with a plastic cover. This helix monopole is
used because its input impedance is larger than that of a regular monopole and more attractive for
matching to typical transmission lines used as feed lines, such as a coaxial line (see Problem 10.18).

The helix operates in the axial mode when the circumference of the loop is between 3/4\ <
C < 4/3)\ with an optimum design when the circumference is nearly one wavelength. When the
circumference of the loop approaches one wavelength, the maximum of the pattern is along its axis.
In addition, the phasing among the turns is such that overall the helix forms an end-fire antenna with
attractive impedance and polarization characteristics (see Example 10.1). In general, the helix is a
popular communication antenna in the VHF and UHF bands.

The Yagi-Uda antenna is primarily an array of linear dipoles with one element serving as the feed
while the others act as parasitic. However this arrangement has been extended to include arrays of
loop antennas, as shown in Figure 10.30. As for the helical antenna, in order for this array to perform
as an end-fire array, the circumference of each of the elements is near one wavelength. More details
can be found in Section 10.3.4 and especially in [11]—[14]. A special case is the quad antenna which
is very popular amongst ham radio operators. It consists of two square loops, one serving as the
excitation while the other is acting as a reflector; there are no directors. The overall perimeter of
each loop is one wavelength.
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5.4.2 Design Procedure

The design of small loops is based on the equations for the radiation resistance (5-24), (5-24a), direc-
tivity (5-31), maximum effective aperture (5-32), resonance capacitance (5-35), resonance input
impedance (5-36) and inductance (5-37a), (5-37b). In order to resonate the element, the capaci-
tor C, of Figure 5.4 is chosen based on (5-35) so as to cancel out the imaginary part of the input
impedance Z;,.

For large loops with a nonuniform current distribution, the design is accomplished using the
curves of Figure 5.13 for the axial directivity and those of Figure 5.15 for the impedance. To resonate
the loop, usually a capacitor in parallel or an inductor in series is added, depending on the radius of
the loop and that of the wire.

Example 5.4

Design a resonant loop antenna to operate at 100 MHz so that the pattern maximum is along
the axis of the loop. Determine the radius of the loop and that of the wire (in meters), the axial
directivity (in dB), and the parallel lumped element (capacitor in parallel or inductor in series)
that must be used in order to resonate the antenna.

Solution: In order for the pattern maximum to be along the axis of the loop, the circumference
of the loop must be large compared to the wavelength. Therefore the current distribution will be
nonuniform. To accomplish this, Figure 5.15 should be used. There is not only one unique design
which meets the specifications, but there are many designs that can accomplish the goal.

One design is to select a circumference where the loop is self resonant, and there is no need for
a resonant capacitor. For example, referring to Figure 5.15(b) and choosing an Q = 12, the cir-
cumference of the loop is nearly 1.089A. Since the free-space wavelength at 100 MHz is 3 meters,
then the circumference is

circumference =~ 1.089(3) = 3.267 meters

while the radius of the loop is

3.267

T

= 0.52 meters

radius = a =

The radius of the wire is obtained using

Q=12=21n<2%a)

or

a
— =64.2077
b

Therefore the radius of the wire is

a 052

= - — \Uj = & 1 -3
b= 2077 = Gano7y ~ 08099 cm = 8.099 10" meters

Using Figure 5.13, the axial directivity for this design is approximately 3.7 dB. Using
Figure 5.15(a), the input impedance is approximately

Z. =7' ~ 149 ohms

m in —
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Since the antenna chosen is self resonant, there is no need for a lumped element to resonate
the radiator.

Another design will be to use another circumference where the loop is not self resonant. This
will necessitate the use of a capacitor C, to resonate the antenna. This is left as an end of the
chapter exercise.

5.5 GROUND AND EARTH CURVATURE EFFECTS FOR CIRCULAR LOOPS

The presence of a lossy medium can drastically alter the performance of a circular loop. The parame-
ters mostly affected are the pattern, directivity, input impedance, and antenna efficiency. The amount
of energy dissipated as heat by the lossy medium directly affects the antenna efficiency. As for the
linear elements, geometrical optics techniques can be used to analyze the radiation characteristics of
loops in the presence of conducting surfaces. The reflections are taken into account by introducing
appropriate image (virtual) sources. Divergence factors are introduced to take into account the effects
of the ground curvature. Because the techniques are identical to the formulations of Section 4.8, they
will not be repeated here. The reader is directed to that section for the details. It should be pointed out,
however, that a horizontal loop has horizontal polarization in contrast to the vertical polarization of a
vertical electric dipole. Exact boundary-value solutions, based on Sommerfeld integral formulations,
are available [31]. However they are too complex to be included in an introductory chapter.

By placing the loop above a reflector, the pattern is made unidirectional and the directivity is
increased. To simplify the problem, initially the variations of the axial directivity (8 = 0°) of a cir-
cular loop with a circumference of one wavelength (ka = 1) when placed horizontally a height &
above an infinite in extent perfect electric conductor are examined as a function of the height above
the ground plane. These were obtained using image theory and the array factor of two loops, and they
are shown for 10 < Q < 20 in Figure 5.17 [8], [32]. Since only one curve is shown for 10 < Q < 20,
it is evident that the directivity variations as a function of the height are not strongly dependent on
the radius of the wire of the loop. It is also apparent that for 0.05A < 7 < 0.2A and 0.65A < h < 0.75\A

—— Theory, infinite reflector
121 Q=10-20 N

10~

Directivity (dB)

Figure 5.17 Directivity of circular-loop antenna, C = ka = 1, for = 0 versus distance from reflector //A.
Theoretical curve is for infinite planar reflector. (SOURCE: G. S. Smith, “Loop Antennas,” Chapter 5 of Antenna
Engineering Handbook, 1984, (© 1984 McGraw-Hill, Inc. Permission by McGraw-Hill, Inc).
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“Loop Antennas,” Chapter 5 of Antenna Engineering Handbook, 1984, (©) 1984, McGraw-Hill, Inc. Permission
by McGraw-Hill, Inc).

the directivity is about 9 dB. For the same size loop, the corresponding variations of the impedance
as a function of the height are shown in Figure 5.18 [8], [32]. While the directivity variations are not
strongly influenced by the radius of the wire, the variations of the impedance do show a dependence
on the radius of the wire of the loop for 10 < Q < 20.

A qualitative criterion that can be used to judge the antenna performance is the ratio of the radia-
tion resistance in free-space to that in the presence of the homogeneous lossy medium [33]. This is
a straightforward but very tedious approach. A much simpler method [34] is to find directly the self-
impedance changes (real and imaginary) that result from the presence of the conducting medium.

Since a small horizontal circular loop is equivalent to a small vertical magnetic dipole (see Sec-
tion 5.2.2), computations [35] were carried out for a vertical magnetic dipole placed a height /2 above
a homogeneous lossy half-space. The changes in the self-impedance, normalized with respect to the
free-space radiation resistance R, given by (5-24), are found in [35]. Significant changes, compared
to those of a perfect conductor, are introduced by the presence of the ground.

The effects that a stratified lossy half-space have on the characteristics of a horizontal small cir-
cular loop have also been investigated and documented [36]. It was found that when a resonant loop
is close to the interface, the changes in the input admittance as a function of the antenna height
and the electrical properties of the lossy medium were very pronounced. This suggests that a reso-
nant loop can be used effectively to sense and to determine the electrical properties of an unknown
geological structure.

5.6 POLYGONAL LOOP ANTENNAS

The most attractive polygonal loop antennas are the square, rectangular, triangular, and rhombic.
These antennas can be used for practical applications such as for aircraft, missiles, and communi-
cations systems. However, because of their more complex structure, theoretical analyses seem to be
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unsuccessful [37]. Thus the application of these antennas has received much less attention. However
design curves, computed using the Moment Method, do exist [38] and can be used to design polyg-
onal loop antennas for practical applications. Usually the circular loop has been used in the UHF
range because of its higher directivity while triangular and square loops have been applied in the
HF and UHF bands because of advantages in their mechanical construction. Broadband impedance
characteristics can be obtained from the different polygonal loops.

The input impedance (Z = R + jX) variations, for the following four configurations are found in
[38]:

e Top-driven triangular
¢ Base-driven triangular
e Rectangular

* Rhombic

If the appropriate shape and feed point are chosen, a polygonal loop will have broadband impedance
characteristics and be matched to the 50-ohm lines. From the four configurations listed above, the
two most attractive configurations are the triangular loop (isosceles triangle) and the rectangular
loop with a height/length = 0.5 ratio.

5.7 FERRITE LOOP

Because the loss resistance is comparable to the radiation resistance, electrically small loops are
very poor radiators and are seldom used in the transmitting mode. However, they are often used
for receiving signals, such as in radios and pagers, where the signal-to-noise ratio is much more
important than the efficiency.

5.7.1 Radiation Resistance

The radiation resistance, and in turn the antenna efficiency, can be raised by increasing the circumfer-
ence of the loop. Another way to increase the radiation resistance, without increasing the electrical
dimensions of the antenna, would be to insert within its circumference a ferrite core that has a ten-
dency to increase the magnetic flux, the magnetic field, the open-circuit voltage, and in turn the
radiation resistance of the loop [39], [40]. This is the so-called ferrite loop and the ferrite material
can be a rod of very few inches in length. The radiation resistance of the ferrite loop is given by

R, 2

_ [ Hee — 2 72

R < Ho > cer 672
. ’

where
Ry = radiation resistance of ferrite loop
R, = radiation resistance of air core loop
U, = effective permeability of ferrite core
Ho = permeability of free-space

U0, = relative effective permeability of ferrite core

Using (5-24), the radiation resistance of (5-72) for a single-turn small ferrite loop can be written as

2

C\*(H cy\*

— 2 ce ) _ 2 2 )
Ry =207 (}») <Mo) 207z (h) ML, (5-73)
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and for an N-turn loop, using (5-24a), as

4 2 4
Ry = 202 (%) (i—) N2 = 2072 (%) 42, N2 (5-74)
0

The relative effective permeability of the ferrite core y,,, is related to the relative intrinsic per-
meability of the unbounded ferrite material p.(pp = py / to) by

Hee ”f”

e T (5-75)
o T+D(uy— D)

ﬂcer =

where D is the demagnetization factor which has been found experimentally for different core
geometries, as shown in Figure 5.19. For most ferrite material, the relative intrinsic permeability ;. is
very large (u;, > 1) so that the relative effective permeability of the ferrite core y,,, is approximately
inversely proportional to the demagnetization factor, or ,,, ~ 1/D = D!, In general, the demag-
netization factor is a function of the geometry of the ferrite core. For example, the demagnetization
factor for a sphere is D = % while that for an ellipsoid of length 2/ and radius a, such that [ > a, is

D=<%)2 [m(g)—l], I>a (5-75a)

a

5.7.2 Ferrite-Loaded Receiving Loop

Because of their smallness, ferrite loop antennas of few turns wound around a small ferrite rod are
used as antennas, especially in the older generation pocket transistor radios. The antenna is usu-
ally connected in parallel with the RF amplifier tuning capacitance and, in addition to acting as an
antenna, it furnishes the necessary inductance to form a tuned circuit. Because the inductance is

Demagnetization factor D

1074 1 1 1 )
1 S 10 50 100

Core length/diameter ratio

Figure 5.19 Demagnetization factor as a function of core length/diameter ratio. (SOURCE:
E. A. Wolff, Antenna Analysis, Wiley, New York, 1966).
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obtained with only few turns, the loss resistance is kept small. Thus the Q is usually very high, and
it results in high selectivity and greater induced voltage.

The equivalent circuit for a ferrite-loaded loop antenna is similar to that of Figure 5.4 except that
a loss resistance R, in addition to R;, is needed to account for the power losses in the ferrite core.
Expressions for the loss resistance R;; and inductance L, for the ferrite-loaded loop of N turns can
be found in [7] and depend on some empirical factors which are determined from an average of
experimental results. The inductance L; is the same as that of the unloaded loop.

5.8 MOBILE COMMUNICATION SYSTEMS APPLICATIONS

As was indicated in Section 4.7.4 of Chapter 4, the monopole was one of the most widely used
elements for handheld units of mobile communication systems. An alternative to the monopole is the
loop, [41]—[46], which has been often used in pagers but has found very few applications in handheld
transceivers. This is probably due to loop’s high resistance and inductive reactance which are more
difficult to match to standard feed lines. The fact that loop antennas are more immune to noise makes
them more attractive for an interfering and fading environment, like that of mobile communication
systems. In addition, loop antennas become more viable candidates for wireless communication
systems which utilize devices operating at higher frequency bands, particularly in designs where
balanced amplifiers must interface with the antenna. Relative to top side of the handheld unit, such
as the telephone, the loop can be placed either horizontally [42] or vertically [44]—[46]. Either
configuration presents attractive radiation characteristics for land-based mobile systems.

The radiation characteristics, normalized pattern and input impedance, of a monopole and vertical
loop mounted on an experimental mobile handheld device were examined in [44]—[46]. The loop
was in the form of a folded configuration mounted vertically on the handheld conducting device
with its one end either grounded or ungrounded to the device. The predicted and measured input
impedance of the folded loop, when its terminating end was grounded to the box, are displayed in
Figure 5.20(a,b). It is evident that the first resonance, around 900 MHz, of the folded loop is of the
parallel type (antiresonance) with a very high, and rapidly changing versus frequency, resistance,
and reactance. These values and variations of impedance are usually undesirable for practical imple-
mentation. For frequencies below the first resonance, the impedance is inductive (imaginary part
is positive), as is typical of small loop antennas (see Figure 5.15); above the first resonance, the
impedance is capacitive (negative imaginary part). The second resonance, around 2,100 MHz, is of
the series type with slowly varying values of impedance, and of desirable magnitude, for practical
implementation. The resonance forms (parallel vs. series) can be interchanged if the terminating end
of the folded loop is ungrounded with the element then operating as an L monopole [44]—[46] and
exhibiting the same resonance behavior as that of a monopole mounted on the device (see Chapter 4,
Section 4.7.5, Figure 4.24). Even though the radiating element is a loop whose plane is vertical to
the box, the amplitude pattern, in both cases (loop and L), is similar and nearly omnidirectional as
that of the monopole of Figure 4.24 because the PEC box is also part of the radiating system.

A summary of the pertinent parameters and associated formulas and equation numbers for this
chapter are listed in Table 5.1.

5.9 MULTIMEDIA

In the publisher’s website for this book, the following multimedia resources are included for the
review, understanding, and visualization of the material of this chapter:

a. Java-based interactive questionnaire, with answers.
b. Java-based applet for computing and displaying the radiation characteristics of a loop.
c. Java-based animation of loop amplitude pattern.
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Figure 5.20 Input impedance, real and imaginary parts of a wire folded loop mounted vertically on a con-
ducting mobile hand-held unit (SOURCE: K. D. Katsibas, et al., “Folded Loop Antenna for Mobile Hand-Held
Units,” IEEE Transactions Antennas Propagat., Vol. 46, No. 2, February 1998, pp. 260-266. (©) 1998 IEEE).

d. Matlab computer program, designated Circular_Loop_Uniform, for computing the radiation
characteristics of a loop. A description of the program is found in the READ ME file of the
corresponding program in the publisher’s website for this book.

e. The Matlab computer program Circular_Loop_Nonuniform can be used to compute the radi-
ation characteristics (current distribution, input impedance, amplitude pattern, and directivity
pattern) of a circular loop with uniform cosinusoidal and Fourier series current distributions.

f. Power Point (PPT) viewgraphs, in multicolor.
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TABLE 5.1 Summary of Important Parameters, and Associated Formulas and Equation Numbers for

Loop in Far Field
Equation
Parameter Formula Number
Small Circular Loop (a < \/6r,C < L\/3)
(Uniform Current)
Normalized power pattern U=|E,|*=C,sin’0 (5-27b)
E
Wave impedance Z, Z,= —F¢ ~ n =377 Ohms (5-28)
0
Directivity D, D, = % =1.761 dB (5-31)
. . 322
Maximum effective area A,,, A, = S (5-32)
7
o\
Radiation resistance R, (one turn) R, =207 (X) (5-24)
C 4
Radiation resistance R, (N turns) R, =207 <X) N? (5-24a)
o\
Input resistance R;, R, =R, =20x" (X) (5-24)
Loss resistance R; (one turn) R, = L @ _ C  [@ (2-90b)
g P\ 26 22b\ 20
. Na Rp
Loss resistance R; (N turns) R, = 7RS N +1 (5-25)
0
Circular loop external inductance L, L, = pya |In %) - 2] (5-37a)
Square loop external inductance L, L, = 2”02 [ln (%) - 0.774] (5-37b)
V4
. . . a [@Hy
Circular loop internal inductance L; Li=—4— (5-38a)
wb '\ 20
@
Square loop internal inductance L, L, = 2a_ |2k (5-38b)
wrb \ 20
Vector effective length , v, =4, Jjkoma® cos y; sin 6, (5-40)
Half-power beamwidth HPBW = 90° (4-65)
Large Circular Loop (a > )\/2,C > 3.14))
(Uniform Current)
Normalized power pattern U= |E,,|* = C,J*(kasin 6) (5-57)
E
Wave impedance Z, Z,= _I-T¢ ~n =377 Ohms (5-28)
0
Directivity D, (a > 1/2) D, = 0.677 (%) (5-63b)
. . % C
Maximum effective area A, (a > A/2) A= [0.677 <X )] (5-63¢)
¥
Radiation resistance (a > 1/2), R, = 607> (%) (5-63a)
(one turn)
Input resistance (a > A/2), (one turn) R, =R, = 60z (%) (5-63a)
Loss resistance R, (one turn) R, = L @ _ C @ (2-90b)
L L PV 20 27b\ 20
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TABLE 5.1  (continued)

Equation
Parameter Formula Number
. Na Rp
Loss resistance R, (N turns) R, = 7& R +1 (5-25)
0
External inductance L, L, = uya [ln (%) - 2] (5-37a)
7}
Internal inductance L, ;= a2 (5-38a)
wb \| 20
Vector effective length Z, ¢, =4, jkoma® cos y; sin 0, (5-40)
Ferrite Circular Loop (a < \/6x,C < \/3)
(uniform currelzt)
Radiation resistance R, (one turn) R = 2012 (E) u? (5-73)
}\‘ cer
”fr
= 5-75
Heer = 17 Dl — 1) (5-75)
.. . 4
Radiation resistance R, (N turns) R, = 207> (%) W2 N? (5-74)
2
Ellipsoid: D = (9) [ln (§> - 1]
l a
Demagnetizing factor D [>a (5-75a)

Sphere: D = %
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PROBLEMS

5.1. Derive

(a) (5-18a)—(5-18c) using (5-17) and (3-2a)
(b) (5-19a)—(5-19b) using (5-18a)—(5-18c)

5.2. Write the fields of an infinitesimal linear magnetic dipole of constant current /,,,, length /, and

positioned along the z-axis. Use the fields of an infinitesimal electric dipole, (4-8a)—(4-10c),
and apply the principle of duality. Compare with (5-20a)—(5-20d).

5.3. A circular loop, of loop radius N/30 and wire radius \/1000, is used as a transmitting/

receiving antenna in a back-pack radio communication system at /0 MHz. The wire of the
loop is made of copper with a conductivity of 5.7 x 10” S/m. Assuming the antenna is radi-
ating in free space, determine the

(a) radiation resistance of the loop;
(b) loss resistance of the loop (assume that its value is the same as if the wire were straight);
(c) input resistance; (d) input impedance; (e) radiation efficiency.

5.4. A small circular loop with a uniform current distribution, and with its classical omnidirec-

tional pattern, is used as a receiving antenna. Determine the maximum directivity (dimen-
sionless and in dB) using:

(a) Exact method.

(b) An approximate method appropriate for this pattern. Specify the method used.

(c) Another approximate method appropriate for this pattern. Specify the method used.
Hint: For the approximate methods, the word omnidirectional is a clue.

5.5. A N-turn resonant circular loop with a uniform current distribution and with a circumfer-

ence of /4, is fed by a lossless balanced twin-lead transmission line with a characteristic
impedance of 300 ohms. Neglecting proximity effects, determine the

(a) closest integer number of turns so that the input impedance is nearly 300 ohms;
(b) input impedance of the antenna; (c) reflection coefficient;
(d) VSWR inside the transmission line.

5.6. A small circular loop with circumference C < A/20 is used as a receiving antenna. A uniform

plane wave traveling along the x-axis and toward the positive (+) x direction (as shown in the
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5.7.

5.8.

5.9.

5.10.

S.11.

5.12.
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figure), whose electric field is given by
s ik
E, =@ +2a)e’

is incident upon the antenna. Determine the
(a) polarization of the incident wave. Justify your answer.

(b) axial ratio of the polarization ellipse of the incident wave. y
(c) polarization of the loop antenna toward the x-axis.
(d) polarization loss factor (dimensionless and in dB).

(e) maximum power at / GHz that can be deliv-
ered to a load connected to the antenna, E,
if the power density of the above inci-
dent wave is 5 mwatts/cm’. Assume no

other losses.
Hint: 4, = —a,sin¢ + 4, cos ¢

A combination of a horizontal small loop of uniform current and a vertical infinitesimal
dipole, as shown in the figure below, are used as one antenna. The currents in the two elements
are adjusted so that the magnitudes of the corresponding far-zone electric field components
radiated by each element are equal. For the entire antenna system, loop plus dipole:

(a) Write an expression for the normalized electric filed radi- z
ated by the combination of the two elements.

(b) State the polarization of the entire antenna system (linear,
circular, elliptical). 4

(c) Determine the polarization loss factor (dimensionless and y
in dB) if a linearly polarized wave, coming from any direc-
tion, is incident upon this antenna which is used as a receiv-
ing antenna.

X

Find the radiation efficiency of a single-turn and a four-turn circular loop each of radius
A/(107) and operating at 10 MHz. The radius of the wire is 1073\ and the turns are spaced
3 x 1073} apart. Assume the wire is copper with a conductivity of 5.7 x 107 S/m, and the
antenna is radiating into free-space.

Find the power radiated by a small loop by forming the average power density, using
(5-27a)—(5-27c), and integrating over a sphere of radius r. Compare the answer with (5-23b).

For a small loop of constant current, derive its far-zone fields using (5-17) and the procedure
outlined and relationships developed in Section 3.6. Compare the answers with (5-27a)—
(5-27c¢).

A single-turn resonant circular loop with a A/8x radius is made of copper wire with a wire
radius of 107*A/2x and conductivity of 5.7 x 107 S/m. For a frequency of 100 MHz, deter-
mine, assuming uniform current, the

(a) radiation efficiency (assume the wire is straight);

(b) maximum gain of the antenna (dimensionless and in dB).

A horizontal, one-turn, loop antenna with a circumference of C = 7\ is radiating in free

space, and it used as a ground-based receiving antenna for an over-the-horizon communica-

tion system. Assuming the current distribution is uniform, determine the

(a) Maximum directivity of the antenna (dimensionless and in dB).

(b) Loss resistance of the wire of the loop. Assume the wire is straight, has a radius of 1042,
a conductivity of 107 S/m, and the loop is operating at 100 MHz.
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(¢) Radiation efficiency of the loop (in %).
(d) Maximum gain (dimensionless and in dB) of the loop.

Design a lossless resonant circular loop operating at 10 MHz so that its single-turn radiation
resistance is 0.73 ohms. The resonant loop is to be connected to a matched load through a
balanced “twin-lead” 300-ohm transmission line.

(a) Determine the radius of the loop (in meters and wavelengths).

(b) To minimize the matching reflections between the resonant loop and the 300-ohm trans-
mission line, determine the closest number of integer turns the loop must have.

(c) For the loop of part b, determine the maximum power that can be expected to be delivered
to a receiver matched load if the incident wave is polarization matched to the lossless
resonant loop. The power density of the incident wave is 10~ watts/m?.

A resonant six-turn loop of closely spaced turns is operating at 50 MHz. The radius of the
loop is A /30, and the loop is connected to a 50-ohm transmission line. The radius of the wire
is A/300, its conductivity is ¢ = 5.7 x 107 S/m, and the spacing between the turns is A/100.
Determine the

(a) directivity of the antenna (in dB)
(b) radiation efficiency taking into account the proximity effects of the turns
(c) reflection efficiency (d) gain of the antenna (in dB)

A horizontal, lossless, one-turn circular loop of circumference C = A, with a nonuniform
current distribution, is radiating in free space. The Tar-field pattern of the antenna can be
approximated by

N 5 ek 0° <6 <90°
E¢_Cocos G—r }O°§¢§360°

where C, is a constant and 6 is measured from the normal to the plane/area of the loop.
Determine the

(a) Maximum exact directivity (dimensionless and in dB) of the antenna.
(b) Approximate input impedance of the loop.

(c) Input reflection coefficient when the antenna is connected to a balanced “twin-lead” trans-
mission line with a characteristic impedance of 300 ohms.

(d) Maximum gain of the loop (dimensionless and in dB).

(e) Maximum absolute gain of the loop (dimensionless and in dB).

Find the radiation efficiency (in percent) of an eight-turn circular-loop antenna operating at
30 MHz. The radius of each turn is a = 15 c¢m, the radius of the wire is b = 1 mm, and the

spacing between turns is 2¢ = 3.6 mm. Assume the wire is copper (¢ = 5.7 x 107 S/m), and
the antenna is radiating into free-space. Account for the proximity effect.

A very small circular loop of radius a(a < A/6x) and constant current /;, is symmetrically
placed about the origin at x = 0 and with the plane of its area parallel to the y-z plane. Find the
(a) spherical E- and H-field components radiated by the loop in the far zone

(b) directivity of the antenna

Repeat Problem 5.17 when the plane of the loop is parallel to the x-z plane at y = 0.

Using the computer program of this chapter, compute the radiation resistance and the direc-
tivity of a circular loop of constant current with a radius of

@ a=1/50 (b)a=2/10 (a=nr/4 (da=1r/2
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A constant current circular loop of radius a = 5A/4 is placed on the x-y plane. Find the two
smallest angles (excluding & = 0°) where a null is formed in the far-field pattern.

Design a circular loop of constant current such that its field intensity vanishes only at
6 = 0°(0 = 180°) and 90°. Find its

(a) radius (b) radiation resistance (c) directivity

Design a constant current circular loop so that its first minimum, aside from 6§ = 0°, in its
far-field pattern is at 30° from a normal to the plane of the loop. Find the

(a) smallest radius of the antenna (in wavelengths)

(b) relative (to the maximum) radiation intensity (in dB) in the plane of the loop

Design a constant current circular loop so that its pattern has a null in the plane of the loop,
and two nulls above and two nulls below the plane of the loop. Find the

(a) radius of the loop (b) angles where the nulls occur

A constant current circular loop is placed on the x-y plane. Find the far-field position, relative
to that of the loop, that a linearly polarized probe antenna must have so that the polarization
loss factor (PLF) is maximized.

A very small (a < M) circular loop of constant current is placed a distance & above an infinite
electric ground plane. Assuming z is perpendicular to the ground plane, find the total far-zone
field radiated by the loop when its plane is parallel to the

(a) x-z plane (b) y-zplane
A very small loop antenna (a < A/30) of constant current is placed a height i above a flat,

perfectly conducting ground plane of infinite extent. The area plane of the loop is parallel to
the interface (x-y plane). For far-field observations

(a) find the total electric field radiated by the loop in
the presence of the ground plane

(b) all the angles (in degrees) from the vertical to the

interface where the total field will vanish when the 1 q
height is A i’ £ flo
(c) the smallest nonzero height (in A) such that the total Y
far-zone field exhibits a null at an angle of 60° from / o=
the vertical

The antenna of the VOR (VHF Omni Range) airport guidance system consists of a small
radius a circular loop (a < A, so that its current is uniform). The circular loop is placed on a
plane horizontal and at a height # above an ideal planar and infinite in extent synthesized PMC
(perfect magnetic conductor) ground plane. To make sure the antenna remains operational at
all times, the antenna is placed at a height 7 = 0.75), above the PMC ground plane.
Assuming far-field observations, determine
(a) The normalized array factor of the
equivalent antenna system that is VOR

valid in all space on and above the Loop
Antenna

PMC ground plane. ?
6

(b) All the angles 0 (in degrees) that th
AF (array factor) of the equivalent h
system will achieve its maximum
radiation and allow safe operation
of the VOR navigation system.

PMC
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A very small circular loop, of radius a and constant current /,, is placed a height 4 above an
infinite and flat Perfect Magnetic Conductor (PMC). The area of the loop is parallel to the
PMC, which is on the xy-plane; the z-axis is perpendicular to the PMC interface. Determine
the

(a) Total far-zone electric field radiated by the loop in the presence of the PMC.

(b) Smallest height / (in wavelengths) so that the total field pattern possesses simultaneously
nulls only at & = 0° and 30°.

A small circular loop, with its area parallel to the x-z z

plane, is placed a height & above an infinite flat per-

fectly electric conducting ground plane. Determine

(a) the array factor for the equivalent problem which
allows you to find the total field on and above the
ground plane

4—3‘—4

(b) angle(s) 0 (in degrees) where the array factor will
vanish when the loop is placed at a height A/2
above the ground plane G=o

A small circular electric loop, of uniform current Iy,
is placed horizontally/parallel at zero height (h = 0)
above a Perfect Magnetic Conductor (PMC), and it
is used as a receiving antenna at a frequency of /00 MHz. The circumference of the loop is
C = )\/20. Assuming the wire radius is very small (b < 1), determine the:

(a) Maximum directivity (dimensionless and in dB). Justify your answer.
(b) Maximum effective area (in cm?).

(¢) Maximum power (in watts) that can be delivered to a matched load, connected to the
loop, when a circularly polarized wave, with an power density of 10~* watts/cm?,
is incident (in the direction of maximum directivity) upon the loop. Assume no other
losses.

A small circular loop with its area parallel to the x-z plane is placed at a height & above an
infinite perfectly conducting ground plane, as shown in the figure for Problem 5.29. Deter-
mine the

(a) array factor for the equivalent problem which will allow you to find the total field on and
above the ground plane.

(b) two smallest heights h (in ) greater than h = 0 (i.e., h > 0) that will form a maximum
on the magnitude of the array factor toward 6 = 0°.

The emergency radio police system of Problem 1 (f = 10 MHz) now uses a very small circular

loop of constant current distribution. The circular loop is placed horizontally, as shown below,

a height & above the top of the police car. Consider that the top of the police car to be an

infinite and planar artificial PMC surface. The sensitivity (minimum power) of the system

receiver, to be able to detect an incoming signal, is 10 ywatts. Assuming the incoming signal

is circularly polarized and it incident from a horizontal direction (grazing angle; 8 = 90°),

what is the

(a) Smallest obvious height h (in LA) of the loop above the PMC to maximize the
directivity?

(b) What is this maximum directivity, using the smallest height h from part a, (dimensionless
and in dB)?

(c) Minimum power density (in watts/cm?) of the incoming signal to be detected by the radio
receiver, using the smallest height h from part a?
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6 =90°

Incoming Wave

(PMC)

5.33. For the loop of Problem 5.25(a), find the smallest height /4 so that a null is formed in the y-z
plane at an angle of 45° above the ground plane.

5.34. A circular loop with a radius of a = A/207
is placed vertically a height h above a PEC
ground plane, as shown in the figure (the
yz-plane of its area is perpendicular to the
ground plane). The height 7 is measured
from the center of the loop. For this configu-
ration, determine the

(a) Normalized array factor. Indicate how
you obtained it. You do not need to derive
it as long as you explain the rationale.

(b) Smallest height (in wavelengths) that the
loop must be placed above the ground

| .
»
PEC 7

plane to introduce the first null in the array factor at an angle of § = 60 degrees from the
vertical direction.

5.35. The transmitting and receiving antennas of a wireless communication system consist, respec-
tively, of a small horizontal circular loop (with radius a < A, so that its current is uniform)
and an ideal infinitesimal electric dipole (I <« A/50). The two antennas are at the same level
and separated by a distance d so that one is in the far-field of the other. Assuming both radiate
in an unbounded infinite free-space medium:

Determine the PLF (polarization loss factor, dimensionless and in dB) of the two-antenna
communication system for two different dipole orientations: i.e., when the linear dipole is
oriented along the
(a) z direction (b) y direction

In both cases, the plane (area) of the loop lies on the horizontal plane (parallel to the xy-plane);
i.e., the loop does NOT change orientation; stays the same for both dipole orientations.

z-oriented
dipole

y-oriented
dipole

Horizontal




5.36.

5.37.

5.38.

5.39.

5.40.

541.

5.42.

PROBLEMS 283

A small single-turn circular loop of radius a = 0.05A is operating at 300 MHz. Assuming the
radius of the wire is 104}, determine the

(a) loss resistance (b) radiation resistance (c) loop inductance

Show that the loop inductive reactance is much greater than the loss resistance and radiation
resistance indicating that a small loop acts primarily as an inductor.

Determine the radiation resistance of a single-turn small loop, assuming the geometrical
shape of the loop is

(a) rectangular with dimensions a and b (a,b < \)
(b) elliptical with major axis a and minor axis b (a,b < \)

A one-turn small circular loop is used as a radiating element for a VHF (f = 100 MHz) com-
munications system. The circumference of the loop is C = A/20 while the radius of the wire
is 2/400. Determine, using a wire conductivity of ¢ = 5.7 X 107 S/m, the

(a) input resistance of the wire for a single turn.
(b) input reactance of the loop. Is it inductive or capacitive? Be specific.

(c) inductance (in henries) or capacitance (in farads) that can be placed in series with the
loop at the feed to resonate the antenna at f = 100 MHz; choose the element that will
accomplish the desired objective.

Show that for the rectangular loop the radiation resistance is represented by

a’b?

while for the elliptical loop is represented by

2,212
R, =31,171 <” ab >

1604

Assuming the direction of the magnetic field of the incident plane wave coincides with the
plane of incidence, derive the effective length of a small circular loop of radius a based on
the definition of (2-92). Show that its effective length is (S = na?)

€, =a, jkSsin(0)

A circular loop of nonconstant current distribution, with circumference of 1.42, is attached
to a 300-ohm line. Assuming the radius of the wire is 1.555 X 10722, find the

(a) input impedance of the loop (b) VSWR of the system

(c) inductance or capacitance that must be placed across the feed points so that the loop
becomes resonant at f = 100 MHz.

A very popular antenna for amateur radio operators is a square loop antenna (referred to as

quad antenna) whose circumference is one wavelength. Assuming the radiation characteris-

tics of the square loop are well represented by those of a circular loop:

(a) What is the input impedance (real and imaginary parts) of the antenna?

(b) What element (inductor or capacitor), and of what value, must be placed in series with
the loop at the feed point to resonate the radiating element at a frequency of 1 GHz?

(c) What is the input VSWR, having the inductor or capacitor in place, if the loop is con-
nected to a 78-ohm coaxial cable?
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5.43. A circular loop of nonuniform current, circumference C = A, and wire radius b = 2.47875 X
1073, is used for end-fire (over-the-head; toward zenith; & = 0°) communication. The loop
is connected to a 75-ohm transmission line. Determine the

(a) Approximate input impedance (real and imaginary parts). To get total credit, state how
or where you got the answer. You do not necessarily have to compute it. Equations
(5-37a)—(5-38) are valid only for uniform current distribution.

(b) Is the input impedance capacitive or inductive?

(c) What kind of a lumped element, capacitor or inductor, must be placed in parallel to
resonate the loop?

(d) Atafrequency of 500 MHz, what is the capacitance or inductance of the parallel lumped
element?

(e) What is the new input impedance of the resonated loop (in the presence of the parallel
capacitor or inductor)?

(f) What is the input VSWR of the resonated loop (in the presence of the parallel capacitor
or inductor)?
5.44. Design circular loops of wire radius b, which resonate at the first resonance. Find
(a) four values of a/b where the first resonance occurs (a is the radius of the loop)
(b) the circumference of the loops and the corresponding radii of the wires for the antennas
of part (a).

5.45. Using (5-54b) the asymptotic form of (5-65a) for small argument, show that the radiation
resistance R, for a small radius (a << A) loop of uniform current is given by
C 4
R, = 2072(ka)* = 207> (K)

5.46. Consider a circular loop of wire of radius a on the x-y plane and centered about the origin.
Assume the current on the loop is given by

I4(¢") = Iy cos(¢p")
(a) Show that the far-zone electric field of the loop is given by

_ jnkal e~Jkr J(ka sin 0)

E 0'si
0 2 % 7 kasin® cosfsing
_ Jnka ek, .
E¢ = TIOTJI (ka sin 6) cos ¢
dJ(x)
J'(x) =
1) I

(b) Evaluate the radiation intensity U(@, ¢) in the direction § = 0 and ¢ = % as a function
of ka.
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Arrays: Linear, Planar, and Circular

6.1 INTRODUCTION

In the previous chapter, the radiation characteristics of single-element antennas were discussed and
analyzed. Usually the radiation pattern of a single element is relatively wide, and each element pro-
vides low values of directivity (gain). In many applications it is necessary to design antennas with
very directive characteristics (very high gains) to meet the demands of long distance communication.
This can only be accomplished by increasing the electrical size of the antenna.

Enlarging the dimensions of single elements often leads to more directive characteristics. Another
way to enlarge the dimensions of the antenna, without necessarily increasing the size of the individual
elements, is to form an assembly of radiating elements in an electrical and geometrical configuration.
This new antenna, formed by multielements, is referred to as an array. In most cases, the elements
of an array are identical. This is not necessary, but it is often convenient, simpler, and more practical.
The individual elements of an array may be of any form (wires, apertures, etc.).

The total field of the array is determined by the vector addition of the fields radiated by the
individual elements. This assumes that the current in each element is the same as that of the isolated
element (neglecting coupling). This is usually not the case and depends on the separation between
the elements. To provide very directive patterns, it is necessary that the fields from the elements of the
array interfere constructively (add) in the desired directions and interfere destructively (cancel each
other) in the remaining space. Ideally this can be accomplished, but practically it is only approached.
In an array of identical elements, there are at least five controls that can be used to shape the overall
pattern of the antenna. These are:

the geometrical configuration of the overall array (linear, circular, rectangular, spherical, etc.)
the relative displacement between the elements

the excitation amplitude of the individual elements

the excitation phase of the individual elements

A e

the relative pattern of the individual elements

The influence that each one of the above has on the overall radiation characteristics will be the subject
of this chapter. In many cases the techniques will be illustrated with examples.

Antenna Theory: Analysis and Design, Fourth Edition. Constantine A. Balanis.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/antennatheory4e
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There are a plethora of antenna arrays used for personal, commercial, and military applications
utilizing different elements including dipoles, loops, apertures, microstrips, horns, reflectors, and
so on. Arrays of dipoles are shown in Figures 4.26, 10.19, and 11.15. The one in Figure 4.26 is an
array that is widely used as a base-station antenna for mobile communication. It is a triangular array
consisting of twelve dipoles, with four dipoles on each side of the triangle. Each four-element array,
on each side of the triangle, is basically used to cover an angular sector of 120° forming what is
usually referred to as a sectoral array. The one in Figure 10.19 is a classic array of dipoles, referred
to as the Yagi-Uda array, and it is primarily used for TV and amateur radio applications. The array
of Figure 11.12 is also an array of dipoles, which is referred to as the log-periodic antenna, which
is primarily used for TV reception and has wider bandwidth than the Yagi-Uda array but slightly
smaller directivity. An array of loops is shown in Figure 5.1 and one utilizing microstrips as elements
is displayed in Figure 14.35. An advanced array design of slots, used in the AWACS, is shown in
Figure 6.29.

The simplest and one of the most practical arrays is formed by placing the elements along a line.
To simplify the presentation and give a better physical interpretation of the techniques, a two-element
array will first be considered. The analysis of an N-element array will then follow. Two-dimensional
analysis will be the subject at first. In latter sections, three-dimensional techniques will be introduced.

6.2 TWO-ELEMENT ARRAY

Let us assume that the antenna under investigation is an array of two infinitesimal horizontal dipoles
positioned along the z-axis, as shown in Figure 6.1(a). The total field radiated by the two elements,
assuming no coupling between the elements, is equal to the sum of the two and in the y-z plane it is
given by

E[ = El + E2 = ﬁe]i’]— Ccos 91 +

klgl ( e=/tkri=(B/2)] eIlkr+(p/2)]
_— cos 6, (6-1)
4z 1 ry

where f is the difference in phase excitation between the elements. The magnitude excitation of the
radiators is identical. Assuming far-field observations and referring to Figure 6.1(b),

=5 os 0
for phase variations (6-2b)
ryr+ d cos @
5 ¢
2
ry=r,=r for amplitude variations (6-2c¢)

Equation 6-1 reduces to

- klyle*
E, =ayjn

cos [ etikdcos6+p)/2  ,—j(kd cos 0+ﬁ)/2]

- klyle*
E, =agjn

cos 0 {2 cos [%(kd cos 6 + ﬁ)] } (6-3)

It is apparent from (6-3) that the total field of the array is equal to the field of a single element
positioned at the origin multiplied by a factor which is widely referred to as the array factor. Thus
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(a) Two infinitesimal dipoles
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(b) Far-field observations

Figure 6.1 Geometry of a two-element array positioned along the z-axis.

for the two-element array of constant amplitude, the array factor is given by

AF =2 cos[%(kd cos @ + p)] (6-4)
which in normalized form can be written as

(AF), = cos[%(kd cos 0 + B)] (6-4a)

The array factor is a function of the geometry of the array and the excitation phase. By varying the
separation d and/or the phase f between the elements, the characteristics of the array factor and of
the total field of the array can be controlled.

It has been illustrated that the far-zone field of a uniform two-element array of identical elements
is equal to the product of the field of a single element, at a selected reference point (usually the
origin), and the array factor of that array. That is,

E(total) = [E(single element at reference point)] X [array factor] (6-5)
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This is referred to as pattern multiplication for arrays of identical elements, and it is analogous to
the pattern multiplication of (4-59) for continuous sources. Although it has been illustrated only for
an array of two elements, each of identical magnitude, it is also valid for arrays with any number
of identical elements which do not necessarily have identical magnitudes, phases, and/or spacings
between them. This will be demonstrated in this chapter by a number of different arrays.

Each array has its own array factor. The array factor, in general, is a function of the number of
elements, their geometrical arrangement, their relative magnitudes, their relative phases, and their
spacings. The array factor will be of simpler form if the elements have identical amplitudes, phases,
and spacings. Since the array factor does not depend on the directional characteristics of the radiating
elements themselves, it can be formulated by replacing the actual elements with isotropic (point)
sources. Once the array factor has been derived using the point-source array, the total field of the
actual array is obtained by the use of (6-5). Each point-source is assumed to have the amplitude,
phase, and location of the corresponding element it is replacing.

In order to synthesize the total pattern of an array, the designer is not only required to select the
proper radiating elements but the geometry (positioning) and excitation of the individual elements.
To illustrate the principles, let us consider some examples.

Example 6.1
Given the array of Figures 6.1(a) and (b), find the nulls of the total field when d = /4 and

a. f=0
b. ﬂ=+§
c. f= -5
Solution:
a. f=0

The normalized field is given by
E,, = cosfcos (% cos 0)
The nulls are obtained by setting the total field equal to zero, or
b3
E,, = cosfcos (Z cos 0) lg=9, = O
Thus
cosf, =0=>6, =90°
and

o <%cos€n) =0 %cos@n = %,_ = 6, = does not exist

r
2

The only null occurs at & = 90° and is due to the pattern of the individual elements. The array
factor does not contribute any additional nulls because there is not enough separation between the
elements to introduce a phase difference of 180° between the elements, for any observation angle.
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T
b. f=+2
B +3

The normalized field is given by
T
E,, = cosfcos [Z(COS 0+ 1)]
The nulls are found from

E,, = cos 0 cos [%(COSG I 1)] lg=g, = O

Thus
cosf, =0=0, =90°
and
cos [f(cose + 1)] lo—g. = 0= Z(cos b, +1) = L=, = 0°
4 h 4 2
and

= %(cos 0,+1)= —% = @, = does not exist

The nulls of the array occur at = 90° and 0°. The null at 0° is introduced by the arrangement
of the elements (array factor). This can also be shown by physical reasoning, as shown in Fig-
ure 6.2(a). The element in the negative z-axis has an initial phase lag of 90° relative to the other
element. As the wave from that element travels toward the positive z-axis (6 = 0° direction), it
undergoes an additional 90° phase retardation when it arrives at the other element on the positive
z-axis. Thus there is a total of 180° phase difference between the waves of the two elements when
travel is toward the positive z-axis (6 = 0°). The waves of the two elements are in phase when
they travel in the negative z-axis (6 = 180°), as shown in Figure 6.2(b).

IS

6 =0°
0=0° #1 oIm4
#1 o34 A/8
f PL #—— Ag=90°
A8
A/8 einlA
— Ap=90°
A/8 22
i I
# 6 =180°
6 =180°
(a) 8 =0° direction (b) 6 = 180° direction

Phase accumulation for two-element array for null formation toward 8 = 0° and 180°.
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The normalized field is given by

E,, = cosfcos [%(cos& = 1)]

and the nulls by
E,, = cosfcos [%(cose — 1)] |9=9n =0
Thus
cosf, =0=>6, =90°
and

cos [%(cos 0, — 1)] =0> %(cos 0,—-1) = % = 6, = does not exist
and

/4 4 o
= Z(0s8, — 1) = =2 =0, = 180

The nulls occur at 90° and 180°. The element at the positive z-axis has a phase lag of 90° relative
to the other, and the phase difference is 180° when travel is restricted toward the negative z-axis.
There is no phase difference when the waves travel toward the positive z-axis. A diagram similar
to that of Figure 6.2 can be used to illustrate this case.

To better illustrate the pattern multiplication rule, the normalized patterns of the single ele-
ment, the array factor, and the total array for each of the above array examples are shown in Fig-
ures 6.3, 6.4(a), and 6.4(b). In each figure, the total pattern of the array is obtained by multiplying
the pattern of the single element by that of the array factor. In each case, the pattern is normalized
to its own maximum. Since the array factor for the example of Figure 6.3 is nearly isotropic (within
3 dB), the element pattern and the total pattern are almost identical in shape. The largest magnitude
difference between the two is about 3 dB, and for each case it occurs toward the direction along
which the phases of the two elements are in phase quadrature (90° out of phase). For Figure 6.3 this
occurs along # = 0° while for Figures 6.4(a,b) this occurs along 6 = 90°. Because the array factor
for Figure 6.4(a) is of cardioid form, its corresponding element and total patterns are considerably
different. In the total pattern, the null at & = 90° is due to the element pattern while that toward
6 = 0° is due to the array factor. Similar results are displayed in Figure 6.4(b).

Example 6.2

Consider an array of two identical infinitesimal dipoles oriented as shown in Figures 6.1(a) and
(b). For a separation d and phase excitation difference f between the elements, find the angles of
observation where the nulls of the array occur. The magnitude excitation of the elements is the
same.
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120° 120° 12 120°

180° 180°

Element Array factor

Figure 6.3 Element, array factor, and total field patterns of a two-element array of infinitesimal horizontal
dipoles with identical phase excitation (f = 0°,d = A/4).

Solution: The normalized total field of the array is given by (6-3) as
E,, =cosf cos[%(kd cos O+ f)]
To find the nulls, the field is set equal to zero, or
E,, =cosf cos[%(kd cos 0 + f)llg—g, =0

Thus

cosf, =0=>6, =90°




292 ARRAYS: LINEAR, PLANAR, AND CIRCULAR
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g 3
2 2
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o

(dB down)
(dB down)

90° 90° X 90°

120° 0° 120°

180° 180°

Element Array factor

Relative power
(dB down)

60° 60°

90°

= 90°

120° 120°

180°
Total

(a)

Figure 6.4 Pattern multiplication of element, array factor, and total array patterns of a two-element array of
infinitesimal horizontal dipoles with (a) f = +90°, d = A/4. (continued)

and

cos %(kdcosen+ﬂ)] =0©%(kdcos0n+ﬂ)=i<2n2+1)7r

=6, = cos”! (ﬁ[—ﬂ +@n+ 1)77]) :

n=0,1,2,...

The null at # = 90° is attributed to the pattern of the individual elements of the array while
the remaining ones are due to the formation of the array. For no phase difference between the
elements (f = 0), the separation d must be equal or greater than half a wavelength (d > A/2) in
order for at least one null, due to the array, to occur.
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Relative power
(dB down)

180° 180°

Element Array factor

Figure 6.4 (Continued) (b) p = —90°, d = 1/4.

6.3 N-ELEMENT LINEAR ARRAY: UNIFORM AMPLITUDE AND SPACING

Now that the arraying of elements has been introduced and it was illustrated by the two-element
array, let us generalize the method to include N elements. Referring to the geometry of Figure 6.5(a),
let us assume that all the elements have identical amplitudes but each succeeding element has a f
progressive phase lead current excitation relative to the preceding one (f represents the phase by
which the current in each element leads the current of the preceding element). An array of identical
elements all of identical magnitude and each with a progressive phase is referred to as a uniform
array. The array factor can be obtained by considering the elements to be point sources. If the actual
elements are not isotropic sources, the total field can be formed by multiplying the array factor of
the isotropic sources by the field of a single element. This is the pattern multiplication rule of (6-5),
and it applies only for arrays of identical elements. The array factor is given by

AF =1+ e+j(kdcos0+ﬂ) + e+j2(kdcos 0+p) 4ot ej(N—l)(kdcos 0+p)

al (6-6)
AF = ej(n—l)(kd cos 0+p)

n=1
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-

(a) Geometry (b) Phasor diagram

Figure 6.5 Far-field geometry and phasor diagram of N-element array of isotropic sources positioned along
the z-axis.

which can be written as

N
AF = ) gl (6-7)
n=1
where yw =kdcosO+ f (6-7a)

Since the total array factor for the uniform array is a summation of exponentials, it can be rep-
resented by the vector sum of N phasors each of unit amplitude and progressive phase y relative to
the previous one. Graphically this is illustrated by the phasor diagram in Figure 6.5(b). It is appar-
ent from the phasor diagram that the amplitude and phase of the AF can be controlled in uniform
arrays by properly selecting the relative phase y between the elements; in nonuniform arrays, the
amplitude as well as the phase can be used to control the formation and distribution of the total array
factor.

The array factor of (6-7) can also be expressed in an alternate, compact and closed form whose
functions and their distributions are more recognizable. This is accomplished as follows.

Multiplying both sides of (6-7) by &/¥, it can be written as

(AF)e" = ¥ + eV + eV 4 oo 4 NIV NV (6-8)
Subtracting (6-7) from (6-8) reduces to

AF(Y — 1) = (=1 + &M¥) (6-9)
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which can also be written as

AF = N _ =12y N/ _ o=iN/Dw
eV — 1 /2w — e=i(1/2w

n(5v)
sin ([ —y
((N—1)/21w 2

=¢ 1 (6-10)
in(lv)
If the reference point is the physical center of the array, the array factor of (6-10) reduces to
. (N
in (%)
AF = — T (6-10a)
sin <§y/>
For small values of y, the above expression can be approximated by
. (N
in (%)
AF =~ v (6-10b)
2

The maximum value of (6-10a) or (6-10b) is equal to N. To normalize the array factors so that the
maximum value of each is equal to unity, (6-10a) and (6-10b) are written in normalized form as (see
Appendix II)

. (N
1 SIH(EW
AF), = —| ——— -
(AF), = < Sin(%u/) (6-10c)
and (see Appendix I)
in(3v)
(AF), ~ -~ (6-10d)
EW

To find the nulls of the array, (6-10c) or (6-10d) is set equal to zero. That is,

. (N N _ A 2n
sin <3u/) =0= El]/lezgn = +nn = 6, = cos ! [ﬁ <—ﬂ + ﬁﬂ')]
n=1,2,3,... (6-11)
n# N,2N,3N, ... with (6-10c)

Forn = N,2N,3N, ..., (6-10c) attains its maximum values because it reduces to a sin(0)/0 form. The
values of n determine the order of the nulls (first, second, etc.). For a zero to exist, the argument of
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the arccosine cannot exceed unity. Thus the number of nulls that can exist will be a function of the
element separation d and the phase excitation difference f.
The maximum values of (6-10c) occur when

% = %(kdcos& + Plo=g, = tmn =0, = cos™! [ﬁ(—ﬁ + 2mr)
m=20,1,2,... (6-12)

The array factor of (6-10d) has only one maximum and occurs when m = 0 in (6-12). That is,

—cos—! (M ]
0,, = cos <27rd> (6-13)

which is the observation angle that makes y = 0.
The 3-dB point for the array factor of (6-10d) occurs when (see Appendix I)

%t[/ - %(kdcos@ + Plg_g, = =1.391
_ A 2.782
= [y (0 22
n=cos g \TPETy (©6-14)
which can also be written as
For large values of d(d > 1)), it reduces to
T A 2.782
0, ~ ___(— i_>] 6-14b
n= 13T 2 TPy (6-14b)

The half-power beamwidth ®; can be found once the angles of the first maximum (6,,) and the
half-power point (6;,) are determined. For a symmetrical pattern

0, =210, — 6, (6-14c)

For the array factor of (6-10d), there are secondary maxima (maxima of minor lobes) which occur
approximately when the numerator of (6-10d) attains its maximum value. That is,

sin (Ey/> = sin [%(kdcose + /3)] |0=95 ~ 4]l %(kdcose + ﬁ)|0=as

2
25+ 1 _1{ A [ <2s+1> ]}
>~ = ~ _ =
i( 2 )ﬂ 0y = cos 2rd b+ N ik

s=1,2,3,... (6-15)

which can also be written as

0.2 s (S [+ (BE) 4]} s=123. (6-152)
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For large values of d(d > 1), it reduces to

T A 25+ 1
~F_ ML Cos=1.2.3.. 6-15b
O3 27rd[ﬁi< N )”] s (6-15b)

The maximum of the first minor lobe of (6-10c) occurs approximately when (see Appendix I)

N N 3
T¥ =3 kdcos 0+ Plomg, =+ () (6-16)
or when
1 A [ 3z }
= — |- — -1
0, = cos {27zd ﬂiN (6-16a)
At that point, the magnitude of (6-10d) reduces to
. (N
w(@)]
(AF),, ~ —~N =53 = 0.212 (6-17)
¥ o=,
s=1
which in dB is equal to
2
(AF), = 20log, (3—) — _13.46 dB (6-17a)
T

Thus the maximum of the first minor lobe of the array factor of (6-10d) is 13.46 dB down from the
maximum at the major lobe. More accurate expressions for the angle, beamwidth, and magnitude of
first minor lobe of the array factor of (6-10d) can be obtained. These will be discussed in Chapter 12.

6.3.1 Broadside Array

In many applications it is desirable to have the maximum radiation of an array directed normal to the

axis of the array [broadside; 6, = 90° of Figure 6.5(a)]. To optimize the design, the maxima of the

single element and of the array factor should both be directed toward 8, = 90°. The requirements of

the single elements can be accomplished by the judicious choice of the radiators, and those of the

array factor by the proper separation and excitation of the individual radiators. In this section, the

requirements that allow the array factor to “radiate” efficiently broadside will be developed.
Referring to (6-10c) or (6-10d), the first maximum of the array factor occurs when

v =kdcosO+ =0 (6-18)

Since it is desired to have the first maximum directed toward 6, = 90°, then

l[/=deOS€+ﬁ|9:900 Zﬂ:O (6—183)

Thus to have the maximum of the array factor of a uniform linear array directed broadside to the
axis of the array, it is necessary that all the elements have the same phase excitation (in addition
to the same amplitude excitation). The separation between the elements can be of any value. To
ensure that there are no principal maxima in other directions, which are referred to as grating lobes,
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the separation between the elements should not be equal to multiples of a wavelength (d # nA,n =
1,2,3...)when f =0.1fd =nAk,n=1,2,3,... and f = 0, then

v =kdcosO + B = 27n cos 0|9=0°,1800 = +2nrx (6-19)
p=0
n=123,...
This value of y when substituted in (6-10c) makes the array factor attain its maximum value. Thus
for a uniform array with § = 0 and d = nA, in addition to having the maxima of the array factor
directed broadside (6, = 90°) to the axis of the array, there are additional maxima directed along the
axis (6 = 0°, 180°) of the array (end-fire radiation).

One of the objectives in many designs is to avoid multiple maxima, in addition to the main max-
imum, which are referred to as grating lobes. Often it may be required to select the largest spac-
ing between the elements but with no grating lobes. To avoid any grating lobe, the largest spacing
between the elements should be less than one wavelength (d,,, < \).

To illustrate the method, the three-dimensional array factor of a 10-element (N = 10) uniform
array with f# =0 and d = A/4 is shown plotted in Figure 6.6(a). A 90° angular sector has been

Normalized Field
Z Pattern (linear scale)
1

0.9
0.8
0.7

0.6
0.5

0.4
0.3
0.2
0.1

x () Broadside (8= 0, d = M)

Normalized Field
Pattern (linear scale)

(b) Broadside/end-fire (=0, d = \)

Figure 6.6 Three-dimensional amplitude patterns for broadside, and broadside/end-fire arrays (N = 10).
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Figure 6.7  Array factor patterns of a 10-element uniform amplitude broadside array (N = 10, # = 0).

removed for better view of the pattern distribution in the elevation plane. The only maximum occurs
at broadside (6, = 90°). To form a comparison, the three-dimensional pattern of the same array
but with d = A is also plotted in Figure 6.6(b). For this pattern, in addition to the maximum at 6 =
90°, there are additional maxima directed toward 6, = 0°, 180°. The corresponding two-dimensional
patterns of Figures 6.6(a,b) are shown in Figure 6.7.

If the spacing between the elements is chosen between A < d < 2, then the maximum of Fig-
ure 6.6 toward 6, = 0° shifts toward the angular region 0° < 6, < 90° while the maximum toward
0y = 180° shifts toward 90° < 6, < 180°. When d = 2A, there are maxima toward 0°, 60°, 90°, 120°
and 180°.

In Tables 6.1 and 6.2 the expressions for the nulls, maxima, half-power points, minor lobe max-
ima, and beamwidths for broadside arrays have been listed. They are derived from (6-10c)—(6-16a).

6.3.2 Ordinary End-Fire Array

Instead of having the maximum radiation broadside to the axis of the array, it may be desirable to
direct it along the axis of the array (end-fire). As a matter of fact, it may be necessary that it radiates
toward only one direction (either 6, = 0° or 180° of Figure 6.5).

To direct the first maximum toward 6, = 0°,

w=kdcosO+ Bly_ge =kd+p =0 p = —kd (6-20a)

If the first maximum is desired toward 6 = 180°, then

v =kdcosO+ flg_ijgge = —kd+ =0 =kd (6-20b)
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TABLE 6.1  Nulls, Maxima, Half-Power Points, and Minor
Lobe Maxima for Uniform Amplitude Broadside Arrays

NULLS 9, = cos™! (iﬂ 5)
Nd

n=1,23,...
n#N,2N,3N, ...

MAXIMA 9, = cos~! ( N mjk )
m=0,1,2,...
HALF-POWER POINTS 0, ~ cos™! ( " 13917»)

I\
rd/N < 1

MINOR LOBE MAXIMA 0, ~ cos™! [i%l (zs; 1 )]

s=1,2,3,...
rd/h <1

Thus end-fire radiation is accomplished when f = —kd (for 6 = 0°) or f = kd (for 6, = 180°).

If the element separation is d = A/2, end-fire radiation exists simultaneously in both direc-
tions (0, = 0° and 6, = 180°). If the element spacing is a multiple of a wavelength (d = nA,
n=1,2,3,...), then in addition to having end-fire radiation in both directions, there also exist max-
ima in the broadside directions. Thus for d = nA,n =1, 2,3, ... there exist four maxima; two in
the broadside directions and two along the axis of the array. 7o have only one end-fire maximum
and to avoid any grating lobes, the maximum spacing between the elements should be less than
Apax < M2

The three-dimensional radiation patterns of a 10-element (N = 10) array with d = A/4, p = +kd
are plotted in Figure 6.8. When f = —kd, the maximum is directed along 6, = 0° and the three-
dimensional pattern is shown in Figure 6.8(a). However, when f = +kd, the maximum is oriented
toward 6, = 180°, and the three-dimensional pattern is shown in Figure 6.8(b). The two-dimensional
patterns of Figures 6.8(a,b) are shown in Figure 6.9. To form a comparison, the array factor of the
same array (N = 10) but with d = A and f = —kd has been calculated. Its pattern is identical to that
of a broadside array with N = 10,d = A, and it is shown plotted in Figure 6.7. It is seen that there
are four maxima; two broadside and two along the axis of the array.

The expressions for the nulls, maxima, half-power points, minor lobe maxima, and beamwidths,
as applied to ordinary end-fire arrays, are listed in Tables 6.3 and 6.4.

TABLE 6.2 Beamwidths for Uniform Amplitude Broadside Arrays

FIRST-NULL BEAMWIDTH (FNBW) 0, =2 [% — cos™! (]% )]
HALF-POWER BEAMWIDTH (HPBW) 0, ~2 [% — cos™! (—1'3136117‘ )]
T
zd/h < 1
FIRST SIDE LOBE BEAMWIDTH (FSLBW) ~ ©, ~2 [% — cos-! (_23[;\, )]

zd/h <1
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Figure 6.8 Three-dimensional amplitude patterns for end-fire arrays toward 6, = 0° and 180° (N = 10,
d=M\/4%).
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Figure 6.9  Array factor patterns of a 10-element uniform amplitude end-fire array (N = 10,d = 1/4).

6.3.3 Phased (Scanning) Array

In the previous two sections it was shown how to direct the major radiation from an array, by con-
trolling the phase excitation between the elements, in directions normal (broadside) and along the
axis (end fire) of the array. It is then logical to assume that the maximum radiation can be ori-
ented in any direction to form a scanning array. The procedure is similar to that of the previous two
sections.

Let us assume that the maximum radiation of the array is required to be oriented at an angle
0p(0° < 6, < 180°). To accomplish this, the phase excitation f between the elements must be

TABLE 6.3 Nulls, Maxima, Half-Power Points, and Minor
Lobe Maxima for Uniform Amplitude Ordinary End-Fire Arrays

A
NULLS 0 =cos~! (1 - ”—)
, = CoS Na

n=1,23,..
n#N,2N,3N, ...

MAXIMA 0, =cos™! <1 - ’"77‘>

m=0,1,2,...

_ 1.3917»)
ndN

HALF-POWER POINTS 0, ~ cos™! (1
rd/N < 1

_(2s+ 1)x]

MINOR LOBE MAXIMA 0, ~cos7! |1

2Nd
s=1,2,3,...
rd/h <1
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TABLE 6.4 Beamwidths for Uniform Amplitude Ordinary End-Fire Arrays

FIRST-NULL BEAMWIDTH (ENBW) ®, = 2cos™! (1 - %)

HALF-POWER BEAMWIDTH (HPBW) ®, ~2cos”! (1 _1 j; ;]A>
rd/) <1

FIRST SIDE LOBE BEAMWIDTH (FSLBW) @, = 2cos™! (1 - %)
rd/N < 1

adjusted so that

w =kdcost + flg_g, = kdcosby+ f =0= f = —kd cos b, (6-21)

Thus by controlling the progressive phase difference between the elements, the maximum radiation
can be squinted in any desired direction to form a scanning array. This is the basic principle of
electronic scanning phased array operation. Since in phased array technology the scanning must be
continuous, the system should be capable of continuously varying the progressive phase between
the elements. In practice, this is accomplished electronically by the use of ferrite or diode phase
shifters. For ferrite phase shifters, the phase shift is controlled by the magnetic field within the ferrite,
which in turn is controlled by the amount of current flowing through the wires wrapped around the
phase shifter.

For diode phase shifter using balanced, hybrid-coupled varactors, the actual phase shift is con-
trolled either by varying the analog bias dc voltage (typically 0—30 volts) or by a digital command
through a digital-to-analog (D/A) converter [1]—[3].

Shown in Figure 6.10 is an incremental switched-line PIN-diode phase shifter [2]—[3]. This design
is simple, straightforward, lightweight, and high speed. The lines of lengths /; and [/, are switched
on and off by controlling the bias of the PIN diodes, using two single-pole double-throw switches,
as illustrated in Figure 6.10. The differential phase shift, provided by switching on and off the two
paths, is given by

Ap =k(l,— 1)) (6-21a)

In Out

A I ’

Figure 6.10 Incremental switched-line phase shifter using PIN diodes. (SOURCE: D.M. Pozar, Microwave
Engineering, John Wiley & Sons, Inc. 2004).
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By properly choosing /; and [,, and the operating frequency, the differential phase shift (in degrees)
provided by each incremental line phase shifter can be as small as desired, and it determines the
resolution of the phase shifter. The design of an entire phase shifter typically utilizes several such
incremental phase shifters to cover the entire range (0 — 180°) of phase. However, the switched-
line phase shifter, as well as many other ones, are usually designed for binary phase shifts of
Ag¢ = 180°,90°,45°,22.5°, etc. [3]. There are other designs of PIN-diode phase shifters, includ-
ing those that utilize open-circuited stubs and reactive elements [2]. The basic designs of a phase
shifter utilizing PIN diodes are typically classified into three categories: switched line, loaded line,
and reflection type [3]. The loaded-line phase shifter can be used for phase shifts generally 45° or
smaller. Phase shifters that utilize PIN diodes are not ideal switches since the PIN diodes usually
possess finite series resistance and reactance that can contribute significant insertion loss if several
of them are used. These phase shifters can also be used as time-delay devices.

To demonstrate the principle of scanning, the three-dimensional radiation pattern of a 10-element
array, with a separation of A/4 between the elements and with the maximum squinted in the
0, = 60° direction, is plotted in Figure 6.11(a). The corresponding two-dimensional pattern is shown
in Figure 6.11(b).

The half-power beamwidth of the scanning array is obtained using (6-14) with f = —kd cos 6.
Using the minus sign in the argument of the inverse cosine function in (6-14) to represent one angle
of the half-power beamwidth and the plus sign to represent the other angle, then the total beamwidth
is the difference between these two angles and can be written as

oo g st~ )| o [ e+ 2

T
_ 2.782 _ 2.782
=cos~! (cos 0y — W) —cos™! <cos 0y + W) (6-22)
Since N = (L + d)/d, (6-22) reduces to [4]
0, = cos”! [cos, — 0 443L
h 0T L+ d)
(6-22a)
—cos™! [cos 0y + 0.443(14—_):_[0]

where L is the length of the array. Equation (6-22a) can also be used to compute the half-power
beamwidth of a broadside array. However, it is not valid for an end-fire array. A plot of the half-
power beamwidth (in degrees) as a function of the array length is shown in Figure 6.12. These
curves are valid for broadside, ordinary end-fire, and scanning uniform arrays (constant magnitude
but with progressive phase shift). In a later section it will be shown that the curves of Figure 6.12 can
be used, in conjunction with a beam broadening factor [4], to compute the directivity of nonuniform
amplitude arrays.

6.3.4 Hansen-Woodyard End-Fire Array

The conditions for an ordinary end-fire array were discussed in Section 6.3.2. It was concluded
that the maximum radiation can be directed along the axis of the uniform array by allowing the
progressive phase shift f between elements to be equal to (6-20a) for 6, = 0° and (6-20b) for 6, =
180°.

To enhance the directivity of an end-fire array without destroying any of the other characteristics,
Hansen and Woodyard [5] in 1938 proposed that the required phase shift between closely spaced
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Figure 6.11 Three- and two-dimensional array factor patterns of a 10-element uniform amplitude scanning
array (N = 10, f = —kd cos 0,0, = 60°,d = L/4).
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Figure 6.12 Half-power beamwidth for broadside, ordinary end-fire, and scanning uniform linear arrays.
(sourcke: R. S. Elliott, “Beamwidth and Directivity of Large Scanning Arrays,” First of Two Parts, The
Microwave Journal, December 1963).

elements of a very long array’ should be

p=- <kd + 2]\’2) ~ — (kd + %) = for maximum in 6, = 0° (6-23a)
p=+ (ka'+ 2}\%) ~ + (kd + %) = for maximum in 6, = 180° (6-23b)

These requirements are known today as the Hansen-Woodyard conditions for end-fire radiation.
They lead to a larger directivity than the conditions given by (6-20a) and (6-20b). It should be pointed
out, however, that these conditions do not necessarily yield the maximum possible directivity. In fact,
the maximum may not even occur at §, = 0° or 180°, its value found using (6-10c) or (6-10d) may
not be unity, and the side lobe level may not be —13.46 dB. Both of them, maxima and side lobe
levels, depend on the number of array elements, as will be illustrated.

To realize the increase in directivity as a result of the Hansen-Woodyard conditions, it is necessary
that, in addition to the conditions of (6-23a) and (6-23b), |y| assumes values of

For maximum radiation along 6, = 0°

lw| = |kdcos 0 + flg_go = % and |y| = |kdcosO + flg_jgpe = 7 (6-24a)

In principle, the Hansen-Woodyard condition was derived for an infinitely long antenna with continuous distribution. It thus
gives good results for very long, finite length discrete arrays with closely spaced elements.
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For maximum radiation along 6, = 180°
|w| = |kdcos 0 + f|p=1300 = % and |y| = |kdcos@ + flp_ge =~ 7 (6-24b)

The condition of || = 7z /N in (6-24a) or (6-24b) is realized by the use of (6-23a) or (6-23b), respec-
tively. Care must be exercised in meeting the requirement of |y| ~ z for each array. For an array of
N elements, the condition of |y| ~ 7 is satisfied by using (6-23a) for 8 = 0°, (6-23b) for 8 = 180°,
and choosing for each a spacing of

- (552):

If the number of elements is large, (6-25) can be approximated by

d =~ 1 (6-25a)
Thus for a large uniform array, the Hansen-Woodyard condition can only yield an improved direc-
tivity provided the spacing between the elements is approximately /4.

This is also illustrated in Figure 6.13 where the 3-D field patterns of the ordinary and the Hansen-
Woodyard end-fire designs, for N = 10 and d = L/4, are placed next to each other. It is apparent that
the major lobe of the ordinary end-fire is wider (HPBW = 74°) than that of the Hansen-Woodyard
(HPBW = 37°); thus, higher directivity for the Hansen-Woodyard. However, the side lobe of the
ordinary end-fire is lower (about —13.5 dB) compared to that of the Hansen-Woodyard, which is
about —8.9 dB. The lower side lobe by the ordinary end-fire is not sufficient to offset the benefit from
the narrower beamwidth of the Hansen-Woodyard that leads to the higher directivity. A comparison
between the ordinary and Hansen-Woodyard end-fire array patterns is also illustrated in Figure 10.16
for the design of a helical antenna.

To make the comparisons more meaningful, the directivities for each of the patterns of Fig-
ures 6.13 have been calculated, using numerical integration, and it is found that they are equal to
11 and 19, respectively. Thus the Hansen-Woodyard conditions realize a 73% increase in directivity
for this case.

As will be shown in Section 6.4 and listed in Table 6.8, the directivity of a Hansen-Woodyard
end-fire array is always approximately 1.805 times (or 2.56 dB) greater than the directivity of an
ordinary end-fire array. The increase in directivity of the pattern in Figure 6.13 for the Hansen-
Woodyard design is at the expense of an increase of about 4 dB in side lobe level. Therefore in
the design of an array, there is a trade-off between directivity (or half-power beamwidth) and side
lobe level.

To show that (6-23a) and (6-23b) do not lead to improved directivities over those of (6-20a) and
(6-20b) if (6-24a) and (6-24b) are not satisfied, the pattern for the same array (N = 10) with d =
M4 = —=3x/5) and d = A/2(f = —11x/10) are plotted in Figure 6.14. Even though the d = A/2
pattern exhibits a very narrow lobe in the 6, = 0° direction, its back lobes are larger than its main
lobe. The d = A/2 pattern fails to realize a larger directivity because the necessary |y |p—_;gpo =~ 7
condition of (6-24a) is not satisfied. That is,

ly| = |(kd cos 0 + )| 0=180° =|=Qkd+7/N)|g=1p2 =2.1x (6-26)
p=—(kd+r /N) N10

which is not equal to z as required by (6-24a). Similar results occur for spacings other than those
specified by (6-25) or (6-25a).

To better understand and appreciate the Hansen-Woodyard conditions, a succinct derivation of
(6-23a) will be outlined. The procedure is identical to that reported by Hansen and Woodyard in
their classic paper [5].
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Figure 6.13 Three-dimensional patterns for ordinary and Hansen-Woodyard end-fire designs (N = 10,
d=2\/4%).

The array factor of an N-element array is given by (6-10c) as

. [N
sin | —=(kd cos 6 + )
(AF), = < k |

5 (6-27)

in B(kd cos 0 + ﬁ)]
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Figure 6.14 Array factor patterns of a 10-element uniform amplitude Hansen-Woodyard end-fire array
[N =10,p = —(kd + n/N)].

and approximated, for small values of yw(y = kd cos 8 + f8), by (6-10d) or
sin [%(kd cos @ + ﬂ)]

(AF), ~ (6-27a)
[%(kd c0s 0 + ﬁ)]

If the progressive phase shift between the elements is equal to
p=-pd (6-28)

where p is a constant, (6-27a) can be written as

(AF), = sin[g(kcos 6 — p)] _ sin(Z) (6:29)

q(kcos — p) Z

where
g=Nd (6-29a)
2
Z = qg(kcos 6 — p) (6-29b)
The radiation intensity can be written as
. 2
sin(Z

U(®) = [(AF), I* = [%] (6-30)
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whose value at = 0° is equal to

sin[q(k cos 6 — p)] }2

. 2
_ {sm[q(k—p)] } (6-302)
gkcos0—p) S |,y

U@)|p—po =
@lg=0 { ak=p)

Dividing (6-30) by (6-30a), so that the value of the array factor is equal to unity at § = 0°, leads to

. 2 . 2
k— kcos O — Z
Uo), =4 — gtk =p) sinlg(kcosd —p)] |~ _ v sin@) (6-31)
sin[g(k — p)] [g(kcos@ — p)] sin(v) Z
where
v=gqtk—p) (631a)
Z = q(kcos 6 — p) (6-31b)
The directivity of the array factor can be evaluated using
DO — 4”Umax — Umax (6'32)
Prad UO
where Uj) is the average radiation intensity and it is given by
Prad 1 2 r )
= = — () 0 do d
2 xr 2
Z
S / SN ™ Gin 6 do (6-33)
2 | sin(v) 0 Z
By using (6-31a) and (6-31b), (6-33) can be written as
1 (k—p) 1*> [* [sin[g(kcos® —p)]]°
b= = [,q—p] / [ 1 P ] sin 9 do (6-33a)
2 [sinlgtk —=p)I] Jo g(kcos 8 —p)

To maximize the directivity, as given by (6-32), (6-33a) must be minimized. Performing the inte-
gration, (6-33a) reduces to

Uy = 2qu [Sirf(v)r [% + —[COS(Z;) miign S,»(ZU)] = ;qu(v) (6-34)
where
v=qlk=p) (6-34a)
Si(2) = /0 Z %‘” dt (6-34b)
8w) = [si:(v)r [% + % +5,(20) (6-34¢)
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Figure 6.15 Variation of g(v) (see Eq. 6-34c) as a function of v.

The function g(v) is plotted in Figure 6.15 and its minimum value occurs when
v=gtk—p) = i—p) =146 (6-35)

Thus

f=—pd=— (kd + %) (6-36)

which is the condition for end-fire radiation with improved directivity (Hansen-Woodyard condition)
along 6, = 0°, as given by (6-23a). Similar procedures can be followed to establish (6-23b).
Ordinarily, (6-36) is approximated by

ﬂz_(k“%)z_(km%) (6-362)

with not too much relaxation in the condition since the curve of Figure 6.15 is broad around the
minimum point v = —1.46. Its value at v = —1.57 is almost the same as the minimum at v = —1.46.

The expressions for the nulls, maxima, half-power points, minor lobe maxima, and beamwidths
are listed in Tables 6.5 and 6.6.

For the broadside, end-fire and scanning linear designs, there is a maximum spacing d,,,, that
should not be exceeded to maintain in the amplitude pattern either one or two maxima. A second
maximum of the array factor, if it exists, will begin to appear at = 0° as the separation between the
elements increases and the y of (6-21) approaches 2z. This is indicated in Figure 6.7 for the broad-
side array with d = A when a second maximum appears in both of the end-fire directions (6, = 0°
and 180°). The maximum spacing separation d,,,, is intended to keep a second lobe from appear-
ing, whose amplitude would equal the amplitude of the main lobe (referred to as grating lobe). This
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TABLE 6.5 Nulls, Maxima, Half-Power Points, and Minor Lobe Maxima for
Uniform Amplitude Hansen-Woodyard End-Fire Arrays

A
NULLS 0 = cos™! [1 =2
), = cos +( n)ZdN

n=1,23,...
n#N,2N,3N, ...

A
MAXIMA o = *1{1 1—Qm+1 —}
. = COS + [ 2m+ )]2Nd

m=1,2,3,...
md/h <1

HALF-POWER POINTS 9, = cos™! (1 - 0.1398%>

rd/h < 1
N large

MINOR LOBE MAXIMA 9, = cos™! (1 _ %)
s=1,2,3,...

md/h < 1

TABLE 6.6 Beamwidths for Uniform Amplitude Hansen-Woodyard
End-Fire Arrays

FIRST-NULL BEAMWIDTH (FNBW) 0, =2cos™ (1- ﬁ)
HALF-POWER BEAMWIDTH (HPBW) ®, = 2cos™! (1 - 0.1398%)
rd/h <k 1
N large

FIRST SIDE LOBE BEAMWIDTH (FSLBW) ®, =2cos™! (1 - %)

md/h <1

separation can be obtained by equating y of (6-21), with 8 = 0°, to less than 2z, or

A
= kd(cos 6 + | cos @ - <2r=>d,,, < ————
v= K |cosbDlazs <27 = doax < T Toosa,

(6-37)
where 6,, is the scan angle of the main lobe, which allows scanning toward the broadside (6, = 90°),
in both end-fire directions (6, = 0°, 180°) and all other angles (0° < 8, < 180°). Table 6.7 lists the
maximum element spacing d,. for the various linear and planar arrays, uniform and nonuniform,
in order to maintain either one or two amplitude maxima. The d,,, for broadside, end-fire and
scanning arrays are the same as those obtained from (6-37).

6.4 N-ELEMENT LINEAR ARRAY: DIRECTIVITY

The criteria that must be met to achieve broadside and end-fire radiation by a uniform linear array of
N elements were discussed in the previous section. It would be instructive to investigate the direc-
tivity of each of the arrays, since it represents a figure of merit on the operation of the system.
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TABLE 6.7 Maximum Element Spacing d,

max t0 Maintain Either One or Two Amplitude Maxima of a
Linear Array

Array Distribution Type Direction of Maximum Element Spacing
Linear Uniform Broadside 0, =90° only Aax <A
0, = 0°,90°,180° d=»:\
simultaneously
Linear Uniform Ordinary end-fire 0, = 0° only Ao <M/2
0, = 180° only dax <M\/2
0, = 0°,90°,180° d=»\
simultaneously
Linear Uniform Hansen-Woodyard 0, = 0° only d~M\4
end-fire 6, = 180° only d~)/4
Linear Uniform Scanning 0y = 0,ax Apax <A
0< 6, < 180°
Linear Nonuniform Binomial 0, =90° only Aax <A
0, = 0°,90°,180° d=»:\
simultaneously
Linear Nonuniform Dolph-Tschebyscheft 0, =90° only dax < X cos™! (—l>
bis Z,
0, = 0°,90°,180° d=»x\
simultaneously
Planar Uniform Planar 0, = 0° only A <A
6, = 0°,90° and 180°; d=»\
¢y = 0°,90°, 180°,270°
simultaneously

6.4.1 Broadside Array

As a result of the criteria for broadside radiation given by (6-18a), the array factor for this form of
the array reduces to

| sin (%kdcos&)
(AF), = + | —— 2 (6-38)
N sin<lkdcos6'>
2

which for a small spacing between the elements (d < A) can be approximated by

. (N
ey | 540) -
(%kdcos 6')
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The radiation intensity can be written as
2
sin (%kd cos 9)
U(9) = [(AF),J* = = [

sin(Z)] 2 (6-39)

Ekd cos 6 4

Z= %kd cos 0 (6-39a)

The directivity can be obtained using (6-32) where U, of (6-39) is equal to unity (U, = 1)
and it occurs at @ = 90°. The average value U, of the intensity reduces to

. 12
1 1 ["]sin(2)]" .
U0=EPrad=§-/0 [ Z | sin @ do
7
1 /" sin (gkdcos 0)
=3 / — sinf do (6-40)
0 —kd cos 0
2
By making a change of variable, that is,
Z = %kd cos 6 (6-40a)
dzZ = —%kd sin@ do (6-40b)

(6-40) can be written as

NKdJ2 - . 9 ANKd/2 .o
Uo=—L/ ES dzzL/ (2] az (6-41)
Nkd Jinkay U Z Nkd J a2 U Z

For a large array (Nkd /2 — large), (6-41) can be approximated by extending the limits to infinity.
That is,

vo= [T [Sinz]z 7 ~ L/W [Sian z (6-412)
O Nkd gy L Z " Nkd ), L Z
Since
+oo : 2
/ [SH;Z)] dZ = (6-41b)
—00

(6-41a) reduces to

Uy = ﬁ (6-41c)

The directivity of (6-32) can now be written as

N (% ) (6-42)

Umax ~ N_kd —

Dy =
0 UO T
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Using
L=(N-1)d (6-43)

where L is the overall length of the array, (6-42) can be expressed as

d L\ (d
D zZN(—)zZ(l —) (—) 6-44
0 ) HPAVY (6-44)
which for a large array (L > d) reduces to
d L\ /d\ L>d L
po=2(§)=2(1+2)(5) "= 2(3) (6-44a)
Example 6.3

Given a linear, broadside, uniform array of 10 isotropic elements (N = 10) with a separation of
A/4(d = \/4) between the elements, find the directivity of the array.
Solution: Using (6-44a)

Dy ~ 2N <%) =5 (dimensionless) = 101log;y(5) = 6.99 dB

6.4.2 Ordinary End-Fire Array

For an end-fire array, with the maximum radiation in the 6, = 0° direction, the array factor is given by

sin [Ekd(cos o 1)]
(AP), = = (6-45)
N sin [Ekd(cos 60— 1)]

which, for a small spacing between the elements (d < A), can be approximated by

sin [%kd(cos o 1)]
(AF), ~ (6-452)
[%kd(cos o 1)]

The corresponding radiation intensity can be written as

2
_ [sin@)]?
|z

sin [%kd(cose - 1)]

U®) = [(AF),]* = (6-46)

Ekd(cos -1

Z= %kd(cos 0-1) (6-462)



316 ARRAYS: LINEAR, PLANAR, AND CIRCULAR

whose maximum value is unity (U,,,,, = 1) and it occurs at § = 0°. The average value of the radiation
intensity is given by

[%kd(cos 0 — 1)] ’

1 2r x| sin
Up= / N sin0 do do
7Jo Jo Ekd(cos 0—1)

2
_ 1 /,r sin [%kd(cos& - 1)]
2 Jo %kd(cos&— 1

sin 6 do (6-47)

By letting
N
Z= Ekd(cosﬁ -1 (6-47a)
N, .

dzZ = _Ekd sin 6 dé (6-47b)

(6-47) can be written as

—Nkd T 2 Nkd | 2
1 sin(Z) 1 sin(Z)

Uy= —— dZ = — dz 6-48
OdeO[z] de/o[z] (6-43)

For a large array (Nkd — large), (6-48) can be approximated by extending the limits to infinity.
That is,

Nkd . 2 o) . 2

Z z

Uy = —— / RLLCO) I RLLC2) (6-482)
Nikd J, Z Nkd Jy |z

Using (6-41b) reduces (6-48a) to

Uy~ 2 6-48b
O™ 2Nkd (6-48b)
and the directivity to
U,
D0=ﬂ:M=4N<£> (6-49)
UO T A
Another form of (6-49), using (6-43), is
d L\ (d
Do=an (3)=4(1+3) (3) 4
o = 4N » + 7))\ (6-49a)
which for a large array (L > d) reduces to
d L\ /d\ L>d L
D z4N<—>=4<1 —) (£) "= 4(-) 6-49b
0 A HPTAVY A (D)

It should be noted that the directivity of the end-fire array, as given by (6-49)—(6-49b), is twice
that for the broadside array as given by (6-42)—(6-44a).
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Example 6.4
Given a linear, end-fire, uniform array of 10 elements (N = 10) with a separation of
A/4(d = \/4) between the elements, find the directivity of the array factor. This array is identical

to the broadside array of Example 6.3.
Solution: Using (6-49)

Dy ~ 4N <%) = 10 (dimensionless) = 101log;,(10) = 10 dB

This value for the directivity (D, = 10) is approximate, based on the validity of (6-48a). However,
it compares very favorably with the value of Dy = 10.05 obtained by numerically integrating
(6-45) using the Directivity computer program of Chapter 2.

6.4.3 Hansen-Woodyard End-Fire Array

For an end-fire array with improved directivity (Hansen-Woodyard designs) and maximum radiation
in the 6 = 0° direction, the radiation intensity (for small spacing between the elements, d < }A) is
given by (6-31)—(6-31b). The maximum radiation intensity is unity (U,,, = 1), and the average
radiation intensity is given by (6-34) where g and v are defined, respectively, by (6-29a) and (6-34a).
Using (6-29a), (6-34a), (6-35), and (6-37), the radiation intensity of (6-34) reduces to

1 z\2[x 2 0.871
U =—(—) [—+——1.8515] = 2070 6-50
0 2 ' Nkd (6-30)

which can also be written as

0.871 _ 1.742 7

Up= = = 5o = 0554 (53— ) 6-50

0 Nkd ~ 2Nkd 2Nkd (6-02)

The average value of the radiation intensity, as given by (6-50a), is 0.554 times that for the ordi-
nary end-fire array of (6-48b). Thus the directivity can be expressed, using (6-50a), as

U | [2Nkd d
D, = —max _ [ ]:1.805 [4N d ] 6-51
7y, 05541 =« (x) (&-51)

which is 1.805 times that of the ordinary end-fire array as given by (6-49). Using (6-43), (6-51) can
also be written as

d L\d
Dy = 1.805 [4N(X>] — 1.805 [4(1+3> X] (6-51a)
which for a large array (L > d) reduces to

D, = 1.805 [4N (%)] = 1.805 [4 (1 + %) <%)]

~ 1.805 [4(X>] (6-51b)

™~
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TABLE 6.8 Directivities for Broadside and End-Fire Arrays

Array Directivity
d L\ d L
BROADSIDE DO_ZN(X)_2<1+E)X_2<X)
Nrd/\ - oo, L>d
_ d\ _ L\d _ ,(LY) Onlyonemaximum
END-FIRE (ORDINARY) D, = 4N (X) —4 (1 ¥ d) L 4<x) 0, = 0 or 180°)

2Nzd/h — oo, L>d

3 dy _ L\d (L Two maxima
DO—ZN(X)—2<I+3>X_2<X) (6, = 0° and 180°)

END-FIRE (HANSEN-WOODYARD) D, = 1.805 [4N (%)] = 1.805 [4 (1+ {i) %] = 1.805 [4 (’X‘)]
2Nzd/h — oo, L>d

Example 6.5
Given a linear, end-fire (with improved directivity) Hansen-Woodyard, uniform array of 10 ele-
ments (N = 10) with a separation of A/4(d = A/4) between the elements, find the directivity of
the array factor. This array is identical to that of Examples 6.3 (broadside) and 6.4 (ordinary
end-fire), and it is used for comparison.
Solution: Using (6-51b)

D, = 1.805 [4N (%)] — 18.05 (dimensionless) = 101og;(18.05) = 12.56 dB

The value of this directivity (D, = 18.05) is 1.805 times greater than that of Example 6.4
(ordinary end-fire) and 3.61 times greater than that found in Example 6.3 (broadside).

Table 6.8 lists the directivities for broadside, ordinary end fire, and Hansen-Woodyard arrays.

6.5 DESIGN PROCEDURE

In the design of any antenna system, the most important design parameters are usually the number of
elements, spacing between the elements, excitation (amplitude and phase), half-power beamwidth,
directivity, and side lobe level. In a design procedure some of these parameters are specified and the
others are then determined.

The parameters that are specified and those that are determined vary among designs. For a uniform
array, other than for the Hansen-Woodyard end-fire, the side lobe is always approximately —13.5 dB.
For the Hansen-Woodyard end-fire array the side lobe level is somewhat compromised above the
—13.5 dB in order to gain about 1.805 (or 2.56 dB) in directivity. The order in which the other
parameters are specified and determined varies among designs. For each of the uniform linear arrays
that have been discussed, equations and some graphs have been presented which can be used to
determine the half-power beamwidth and directivity, once the number of elements and spacing (or
the total length of the array) are specified. In fact, some of the equations have been boxed or listed
in tables. This may be considered more of an analysis procedure. The other approach is to specify
the half-power beamwidth or directivity and to determine most of the other parameters. This can
be viewed more as a design approach, and can be accomplished to a large extent with equations or
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graphs that have been presented. More exact values can be obtained, if necessary, using iterative or
numerical methods.

Example 6.6

Design a uniform linear scanning array whose maximum of the array factor is 30° from the axis
of the array (6, = 30°). The desired half-power beamwidth is 2° while the spacing between the
elements is A/4. Determine the excitation of the elements (amplitude and phase), length of the
array (in wavelengths), number of elements, and directivity (in dB).

Solution: Since the desired design is a uniform linear scanning array, the amplitude excitation
is uniform. However, the progressive phase between the elements is, using (6-21)

= —kd cos 0, = —277[ <%) c0s(30°) = —1.36 radians = —77.94°

The length of the array is obtained using an iterative procedure of (6-22) or its graphical solu-
tion of Figure 6.12. Using the graph of Figure 6.12 for a scan angle of 30° and 2° half-power
beamwidth, the approximate length plus one spacing (L + d) of the array is SOA. For the SO\
length plus one spacing dimension from Figure 6.12 and 30° scan angle, (6-22) leads to a half-
power beamwidth of 2.03°, which is very close to the desired value of 2°. Therefore, the length
of the array for a spacing of A/4 is 49.75A\.

Since the length of the array is 49.75\ and the spacing between the elements is A /4, the total
number of elements is

N=taio (B -2

=—=2
d 1/4 00

The directivity of the array is obtained using the radiation intensity and the computer program
Directivity of Chapter 2, and it is equal to 100.72 or 20.03 dB.

6.6 N-ELEMENT LINEAR ARRAY: THREE-DIMENSIONAL CHARACTERISTICS

Up to now, the two-dimensional array factor of an N-element linear array has been investigated.
Although in practice only two-dimensional patterns can be measured, a collection of them can be
used to reconstruct the three-dimensional characteristics of an array. It would then be instructive
to examine the three-dimensional patterns of an array of elements. Emphasis will be placed on
the array factor.

6.6.1 N-Elements Along Z-Axis

A linear array of N isotropic elements are positioned along the z-axis and are separated by a distance
d, as shown in Figure 6.5(a). The amplitude excitation of each element is a, and there exists a
progressive phase excitation § between the elements. For far-field observations, the array factor can
be written according to (6-6) as

N N
AF = Y a0 Dkdcosr+h) = 3 g =Dy (6-52)

n=1 n=1

w =kdcosy + (6-52a)
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where the a,,’s are the amplitude excitation coefficients and y is the angle between the axis of the
array (z-axis) and the radial vector from the origin to the observation point.

In general, the angle y can be obtained from the dot product of a unit vector along the axis of the
array with a unit vector directed toward the observation point. For the geometry of Figure 6.5(a)

cosy=4a,-a,=a,-(a,sinfcos¢+a,sinfsing +a,cosd) =cosd =y =0 (6-53)
Thus (6-52) along with (6-53) is identical to (6-6), because the system of Figure 6.5(a) possesses

a symmetry around the z-axis (no ¢ variations). This is not the case when the elements are placed
along any of the other axes, as will be shown next.

6.6.2 N-Elements Along X- or Y-Axis
To demonstrate the simplicity that a judicious coordinate system and geometry can provide in the
solution of a problem, let us consider an array of N isotropic elements along the x-axis, as shown in
Figure 6.16. The far-zone array factor for this array is identical in form to that of Figure 6.5(a) except
for the phase factor y. For this geometry

cosy=4,-4,=4a,-(a,sinfcos ¢ + ﬁy sin @ sin ¢ + 4, cos #) = sin 6 cos ¢ (6-54)

cosy = sinfcos ¢ =y = cos” !(sin O cos ¢) (6-54a)

The array factor of this array is also given by (6-52) but with y defined by (6-54a). For this system,
the array factor is a function of both angles (6 and ¢).
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Figure 6.16 Linear array of N isotropic elements positioned along the x-axis.
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In a similar manner, the array factor for N isotropic elements placed along the y-axis is that of
(6-52) but with y defined by

cosy =4, -4, =sinfsingp =y = cos™!(sin 0 sin ¢) (6-55)

Physically placing the elements along the z-, x-, or y-axis does not change the characteristics of the
array. Numerically they yield identical patterns even though their mathematical forms are different.

Example 6.7
Two half-wavelength dipole (/ = A/2) are positioned along the x-axis and are separated by a
distance d, as shown in Figure 6.17. The lengths of the dipoles are parallel to the z-axis. Find the

total field of the array. Assume uniform amplitude excitation and a progressive phase difference
of .

(b) B == 180°

Figure 6.17 Three-dimensional patterns for two A/2 dipoles spaced A/2. (SOURCE: P. Lorrain and
D. R. Corson, Electromagnetic Fields and Waves, 2nd ed., W. H. Freeman and Co., Copyright (©) 1970).
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Solution: The field pattern of a single element placed at the origin is given by (4-84) as

. 4 0
. Ioe—]kr CcoS 5 Ccos
Eg =jn

2rr sin @

Using (6-52), (6-54a), and (6-10c), the array factor can be written as

sin(kd sin 6 cos ¢ + )

(AF), = —
2 sin [E(kd sin 6 cos ¢ + ﬁ)]

The total field of the array is then given, using the pattern multiplication rule of (6-5), by

T
E, =E, - (AF), = jn ge € (5 cos@) sin(kd sin 6 cos ¢ + )
ot — =6 n —

2xr sin 6

2 sin [%(kd sin 6 cos ¢ + ﬂ)]

To illustrate the techniques, the three-dimensional patterns of the two-element array of Exam-
ple 6.7 have been sketched in Figures 6.17(a) and (b). For both, the element separation is A/2(d =
A/2). For the pattern of Figure 6.17(a), the phase excitation between the elements is identical ( = 0).
In addition to the nulls in the = 0° direction, provided by the individual elements of the array, there
are additional nulls along the x-axis (6 = 7 /2,¢ = 0 and ¢ = x) provided by the formation of the
array. The 180° phase difference required to form the nulls along the x-axis is a result of the separa-
tion of the elements [kd = 2z /)M)(A/2) = x].

To form a comparison, the three-dimensional pattern of the same array but with a 180° phase
excitation (f = 180°) between the elements is sketched in Figure 6.17(b). The overall pattern of this
array is quite different from that shown in Figure 6.17(a). In addition to the nulls along the z-axis
(6 = 0°) provided by the individual elements, there are nulls along the y-axis formed by the 180°
excitation phase difference.

6.7 RECTANGULAR-TO-POLAR GRAPHICAL SOLUTION
In antenna theory, many solutions are of the form
J(§) =f(Ccosy +6) (6-56)

where C and 6 are constants and y is a variable. For example, the approximate array factor of an
N-element, uniform amplitude linear array [Equation (6-10d)] is that of a sin({) /¢ form with

{=Ccosy+6= %W= %(kdcos9+ﬁ) (6-57)

where
¢ =2k (6-57a)
s=Np (6-57b)
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Usually the f(¢) function can be sketched as a function of ¢ in rectilinear coordinates. Since ¢ in
(6-57) has no physical analog, in many instances it is desired that a graphical representation of |f({)|
be obtained as a function of the physically observable angle 6. This can be constructed graphically
from the rectilinear graph, and it forms a polar plot.

The procedure that must be followed in the construction of the polar graph is as follows:

1. Plot, using rectilinear coordinates, the function |f({)].
2. a. Draw a circle with radius C and with its center on the abscissa at { = 6.
b. Draw vertical lines to the abscissa so that they will intersect the circle.

c. From the center of the circle, draw radial lines through the points on the circle intersected
by the vertical lines.

d. Along the radial lines, mark off corresponding magnitudes from the linear plot.
e. Connect all points to form a continuous graph.

To better illustrate the procedure, the polar graph of the function

sin <%W) Sz S5x
— < 7 r=cosf-= (6-58)

ﬂC)stin(%)’ 2 4

has been constructed in Figure 6.18. The function f({) of (6-58) represents the array factor of a
10-element (N = 10) uniform linear array with a spacing of A/4(d = \/4) and progressive phase
shift of —z/4(f = —n/4) between the elements. The constructed graph can be compared with its
exact form shown in Figure 6.11.

From the construction of Figure 6.18, it is evident that the angle at which the maximum is directed
is controlled by the radius of the circle C and the variable é. For the array factor of Figure 6.18, the
radius C is a function of the number of elements (V) and the spacing between the elements (d).
In turn, 6 is a function of the number of elements (V) and the progressive phase shift between the
elements (f). Making 6 = 0 directs the maximum toward 8 = 90° (broadside array). The part of the
linear graph that is used to construct the polar plot is determined by the radius of the circle and the
relative position of its center along the abscissa. The usable part of the linear graph is referred to as
the visible region and the remaining part as the invisible region. Only the visible region of the linear
graph is related to the physically observable angle 6 (hence its name).

6.8 N-ELEMENT LINEAR ARRAY: UNIFORM SPACING,
NONUNIFORM AMPLITUDE

The theory to analyze linear arrays with uniform spacing, uniform amplitude, and a progressive
phase between the elements was introduced in the previous sections of this chapter. A number of
numerical and graphical solutions were used to illustrate some of the principles. In this section,
broadside arrays with uniform spacing but nonuniform amplitude distribution will be considered.
Most of the discussion will be directed toward binomial [6] and Dolph-Tschebyscheff [7] broadside
arrays (also spelled Tchebyscheff or Chebyshev).

Of the three distributions (uniform, binomial, and Tschebyscheff), a uniform amplitude array
yields the smallest half-power beamwidth. It is followed, in order, by the Dolph-Tschebyscheff and
binomial arrays. In contrast, binomial arrays usually possess the smallest side lobes followed, in
order, by the Dolph-Tschebyscheff and uniform arrays. As a matter of fact, binomial arrays with
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Figure 6.18 Rectangular-to-polar plot graphical solution.

element spacing equal or less than A/2 have no side lobes. It is apparent that the designer must
compromise between side lobe level and beamwidth.

A criterion that can be used to judge the relative beamwidth and side lobe level of one design to
another is the amplitude distribution (tapering) along the source. It has been shown analytically that
for a given side lobe level the Dolph-Tschebyscheff array produces the smallest beamwidth between
the first nulls. Conversely, for a given beamwidth between the first nulls, the Dolph-Tschebyscheff
design leads to the smallest possible side lobe level.

Uniform arrays usually possess the largest directivity. However, superdirective (or super gain
as most people refer to them) antennas possess directivities higher than those of a uniform array
[8]. Although a certain amount of superdirectivity is practically possible, superdirective arrays usu-
ally require very large currents with opposite phases between adjacent elements. Thus the net total
current and efficiency of each array are very small compared to the corresponding values of an indi-
vidual element.
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Figure 6.19  Nonuniform amplitude arrays of even and odd number of elements.

Before introducing design methods for specific nonuniform amplitude distributions, let us first
derive the array factor.

6.8.1 Array Factor

An array of an even number of isotropic elements 2M (where M is an integer) is positioned sym-
metrically along the z-axis, as shown in Figure 6.19(a). The separation between the elements is d,
and M elements are placed on each side of the origin. Assuming that the amplitude excitation is

symmetrical about the origin, the array factor for a nonuniform amplitude broadside array can be
written as

(AF)y = a eTi(1/kdcos O a oG/ Dkdcost

+ aMe+j[(2M— 1)/2]kd cos 6

+a o1/ Dkd cos 0 ¢—I3/2kd cos 0

+a, + o

+ aMe—j[QM— 1)/2]kd cos 6

- @n-1)
(AF)y =2 a,cos [”de cos 9] (6-59)

n=1
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which in normalized form reduces to

2n-1)

M
(AF)yy, = Z a, cos [ kd cos 0] (6-59a)
n=1

where a,’s are the excitation coefficients of the array elements.
If the total number of isotropic elements of the array is odd 2M + 1 (where M is an integer), as
shown in Figure 6.19(b), the array factor can be written as

(AF)aps = 20, + ayet 49050 g pi2kdcosd oy g piMkd cosO

+ aze—jkdcosa + a3g—j2kdcos€ + ot aM+le_ijd cos 6
M+1
(AF)yyre1 =2 ) @, cos[(n — 1)kd cos 6] (6-60)
n=1
which in normalized form reduces to
M+1
(AF)yys1 = D @, cosl(n — Dkd cos 0] (6-60a)
n=1
The amplitude excitation of the center element is 2a; .
Equations (6-59a) and (6-60a) can be written in normalized form as
M (6-61a)
(AF),)(even) = z a, cos[(2n — 1)u]
n=1
M+1
(AR)yy41(0dd) = Y a, cos[2(n — 1)u] (6-61b)
where n=1
nd
u= TCOSG (6-61¢)

The next step will be to determine the values of the excitation coefficients (a,,’s).

6.8.2 Binomial Array

The array factor for the binomial array is represented by (6-61a)—(6-61c) where the a,’s are the
excitation coefficients which will now be derived.

A. Excitation Coefficients
To determine the excitation coefficients of a binomial array, J. S. Stone [6] suggested that the function
(1 4+ x)"~! be written in a series, using the binomial expansion, as

(m—1)m—2) ,
21 *
RUERU R

A+0" ' =14+@m-Dx+

(6-62)
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The positive coefficients of the series expansion for different values of m are

m=1 1

m=2 1 1

m=23 1 2 1

m=4 1 3 3 1

m=>5 1 4 6 4 1

m==6 1 5 10 10 5 1

m="717 1 6 15 20 15 6 1

m=38 1 7 21 35 35 21 7 1

m=9 1 8 28 56 70 56 28 8 1
m=10 1 9 36 84 126 126 84 36 9 1

(6-63)

The above represents Pascal’s triangle. If the values of m are used to represent the number of elements
of the array, then the coefficients of the expansion represent the relative amplitudes of the elements.
Since the coefficients are determined from a binomial series expansion, the array is known as a
binomial array.
Referring to (6-61a), (6-61b), and (6-63), the amplitude coefficients for the following arrays are:
1. Two elements (2M = 2)

al=1

2. Three elements 2M + 1 = 3)

3. Four elements 2M = 4)
a; =3
a, =1
4. Five elements QM + 1 =5)
2a) =6>a; =3
a, =4

as = 1
The coefficients for other arrays can be determined in a similar manner.

B. Design Procedure

One of the objectives of any method is its use in a design. For the binomial method, as for any
other nonuniform array method, one of the requirements is the amplitude excitation coefficients for
a given number of elements. This can be accomplished using either (6-62) or the Pascal triangle of
(6-63) or extensions of it. Other figures of merit are the directivity, half-power beamwidth and side
lobe level. It already has been stated that binomial arrays do not exhibit any minor lobes provided
the spacing between the elements is equal or less than one-half of a wavelength. Unfortunately,
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Figure 6.20 Array factor power patterns for a 10-element broadside binomial array with N =10 and
d=A/4,M/2,3\/4, and A.

closed-form expressions for the directivity and half-power beamwidth for binomial arrays of any
spacing between the elements are not available. However, because the design using a A/2 spacing
leads to a pattern with no minor lobes, approximate closed-form expressions for the half-power
beamwidth and maximum directivity for the d = A/2 spacing only have been derived [9] in terms of
the numbers of elements or the length of the array, and they are given, respectively, by

HPBW(d = 1./2) ~ 106 _ 106 _ 075 (6-64)
VN=1 2L/h  +L/A
Dy = — 2 (6-65)
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2N -2)2N —4)--2
7 N =3)2N =5) -1

(6-652)
Dy ~ 1.77V/N = 1.77\/T + 2L/ (6-65b)

These expressions can be used effectively to design binomial arrays with a desired half-power
beamwidth or directivity. The value of the directivity as obtained using (6-65) to (6-65b) can
be compared with the value using the array factor and the computer program Directivity of
Chapter 2.

To illustrate the method, the patterns of a 10-element binomial array (2M = 10) with spacings
between the elements of A/4,A/2,3\/4, and A, respectively, have been plotted in Figure 6.20.
The patterns are plotted using (6-61a) and (6-61c) with the coefficients of a; = 126,a, = 84,a; =
36,a, =9, and a5 = 1. It is observed that there are no minor lobes for the arrays with spacings of
A/4 and \/2 between the elements. While binomial arrays have very low level minor lobes, they
exhibit larger beamwidths (compared to uniform and Dolph-Tschebyscheff designs). A major prac-
tical disadvantage of binomial arrays is the wide variations between the amplitudes of the different
elements of an array, especially for an array with a large number of elements. This leads to very low
efficiencies for the feed network, and it makes the method not very desirable in practice. For exam-
ple, the relative amplitude coefficient of the end elements of a 10-element array is 1 while that of the
center element is 126. Practically, it would be difficult to obtain and maintain such large amplitude
variations among the elements. They would also lead to very inefficient antenna systems. Because
the magnitude distribution is monotonically decreasing from the center toward the edges and the
magnitude of the extreme elements is negligible compared to those toward the center, a very low
side lobe level is expected.

Table 6.7 lists the maximum element spacing d, ., for the various linear and planar arrays, includ-
ing binomial arrays, in order to maintain either one or two amplitude maxima.

Example 6.8
For a 10-element binomial array with a spacing of /2 between the elements, whose amplitude
pattern is displayed in Figure 6.20, determine the half-power beamwidth (in degrees) and the
maximum directivity (in dB). Compare the answers with other available data.
Solution: Using (6-64), the half-power beamwidth is equal to

HPBW ~ —00  _ 106 _ 353 radians = 20.23°

Vio-1 3

The value obtained using the array factor, whose pattern is shown in Figure 6.20, is 20.5° which
compares well with the approximate value.
Using (6-65a), the value of the directivity is equal for N = 10
Dy =5.392="7.32dB

while the value obtained using (6-65b) is

Dy =1.77V10 =5.597 = 7.48 dB

The value obtained using the array factor and the computer program Directivity is
Dy = 5.392 (dimensionless) = 7.32 dB. These values compare favorably with each other.
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6.8.3 Dolph-Tschebyscheff Array: Broadside

Another array, with many practical applications, is the Dolph-Tschebyscheff array. The method
was originally introduced by Dolph [7] and investigated afterward by others [10]—[13]. It is pri-
marily a compromise between uniform and binomial arrays. Its excitation coefficients are related
to Tschebyscheff polynomials. A Dolph-Tschebyscheff array with no side lobes (or side lobes of
—oo dB) reduces to the binomial design. The excitation coefficients for this case, as obtained by
both methods, would be identical.

A. Array Factor

Referring to (6-61a) and (6-61b), the array factor of an array of even or odd number of elements
with symmetric amplitude excitation is nothing more than a summation of M or M + 1 cosine terms.
The largest harmonic of the cosine terms is one less than the total number of elements of the array.
Each cosine term, whose argument is an integer times a fundamental frequency, can be rewritten as
a series of cosine functions with the fundamental frequency as the argument. That is,

m=0 cos(mu)=1
m=1 cos(mu)=cosu
m=2 cos(mu) = cos(Qu) =2cos?u — 1
m=3 cos(mu) = cos(3u) =4cos’ u—3cosu
m=4 cos(mu) = cos(4u) = 8cos* u — 8cos?u+ 1
m=>5 cos(mu) = cos(5u) = 16 cos’ u — 20 cos> u + 5cos u (6-66)
m=6 cos(mu) = cos(6u) =32cos®u — 48 cos* u + 18cos®u — 1
m="7 cos(mu) = cos(Tu) = 64cos’ u—112cos’ u + 56 cos’ u — 7 cos u
m=28 cos(mu) = cos(8u) = 128 cos® u — 256 cos® u + 160 cos* u — 32 cos? u + 1
m=9 cos(mu) = cos(9u) = 256 cos’ u — 576 cos’ u + 432 cos’ u — 120 cos> u + 9 cos u
The above are obtained by the use of Euler’s formula

[¢“]" = (cosu + jsinu)" = ™ = cos(mu) + j sin(mu) (6-67)
and the trigonometric identity sin? u = 1 — cos? u.

If we let
z=cosu (6-68)

(6-66) can be written as

cos(mu) =1 =Ty(2)
cos(mu) =z =T(2)

=0
1
2 cos(mu) =27> =1 ="T,(2)

3 cos(mu) = 47 — 3z = T5(2)

4 cos(mu) = 8z* — 82 + 1 =Ty(2)

5 cos(mu) = 162° — 2073 + 5z = Ts(2) (6-69)
6

7

8

9

cos(mu) = 327° — 487 + 1872 — 1 = Ty(2)

cos(mu) = 6477 — 1127° + 567° — Tz = T4(2)

cos(mu) = 12878 — 2562° + 160z* — 3222 + 1 = Ty(2)
cos(mu) = 25677 — 5767 + 432> — 120> + 9z = Ty(2)

§ 3 3 3 3 3 3 8 3
Il
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and each is related to a Tschebyscheff (Chebyshev) polynomial 7,,(z). These relations between
the cosine functions and the Tschebyscheff polynomials are valid only in the —1 < z < +1 range.
Because | cos(mu)| < 1, each Tschebyscheff polynomial is |7,,(z)] < 1 for—1 < z < +1.For|z| > 1,
the Tschebyscheff polynomials are related to the hyperbolic cosine functions.

The recursion formula for Tschebyscheff polynomials is

Tm(z) = ZZTm—l(z) - Tm—Z(Z) (6-70)

It can be used to find one Tschebyscheff polynomial if the polynomials of the previous two orders
are known. Each polynomial can also be computed using

T,(2) = coslmcos™' ()] —1<z<+1 (6-71a)

T,,(z) = cosh[mcosh™' ()" z<—1,z2> +1 (6-71b)

In Figure 6.21 the first six Tschebyscheff polynomials have been plotted. The following properties
of the polynomials are of interest:

1. All polynomials, of any order, pass through the point (1, 1).
2. Within the range —1 < z < 1, the polynomials have values within —1 to +1.

3. All roots occur within —1 < z < 1, and all maxima and minima have values of +1 and —1,
respectively.

Since the array factor of an even or odd number of elements is a summation of cosine terms
whose form is the same as the Tschebyscheff polynomials, the unknown coefficients of the array
factor can be determined by equating the series representing the cosine terms of the array factor to
the appropriate Tschebyscheff polynomial. The order of the polynomial should be one less than the
total number of elements of the array.

The design procedure will be outlined first, and it will be illustrated with an example. In outlining
the procedure, it will be assumed that the number of elements, spacing between the elements, and
ratio of major-to-minor lobe intensity (R() are known. The requirements will be to determine the
excitation coefficients and the array factor of a Dolph-Tschebyscheff array.

B. Array Design

Statement. Design a broadside Dolph-Tschebyscheff array of 2M or 2M + 1 elements with spacing
d between the elements. The side lobes are R, dB below the maximum of the major lobe. Find the
excitation coefficients and form the array factor.

Procedure

a. Select the appropriate array factor as given by (6-61a) or (6-61b).

b. Expand the array factor. Replace each cos(mu) function (m =0, 1,2, 3, ...) by its appropriate
series expansion found in (6-66).

c. Determine the point z =z, such that 7,,(z,) = R, (voltage ratio). The order m of the
Tschebyscheff polynomial is always one less than the total number of elements. The design
procedure requires that the Tschebyscheff polynomial in the —1 < z < z;, where z; is the null

x= COSh_l(y) =In[y + (yz _ 1)1/2]
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Figure 6.21  Tschebyscheff polynomials of orders zero through five.

nearest to z = +1, be used to represent the minor lobes of the array. The major lobe of the
pattern is formed from the remaining part of the polynomial up to point zy(z; < z < zg).

d. Substitute
(6-72)

cos(u) = z
20

in the array factor of step b. The cos(u) is replaced by z/z, and not by z, so that (6-72) would
be valid for |z| < |zg|. At |z] = |zp], (6-72) attains its maximum value of unity.

e. Equate the array factor from step b, after substitution of (6-72), to a T,,(z) from (6-69). The
T,,(z) chosen should be of order m where m is an integer equal to one less than the total number
of elements of the designed array. This will allow the determination of the excitation coeffi-

cients a,’s.
f. Write the array factor of (6-61a) or (6-61b) using the coefficients found in step e.



N-ELEMENT LINEAR ARRAY: UNIFORM SPACING, NONUNIFORM AMPLITUDE 333

Example 6.9
Design a broadside Dolph-Tschebyscheff array of 10 elements with spacing d between the ele-
ments and with a major-to-minor lobe ratio of 26 dB. Find the excitation coefficients and form
the array factor.
Solution:

1. The array factor is given by (6-61a) and (6-61c). That is,

M=5
(AF)yy = ) @, cos[(2n — )u]
n=1
u= ”—d cos 0
A

2. When expanded, the array factor can be written as

(AF);y = a; cos(u) + a, cos(3u)
+ a; cos(Su) + a, cos(7u) + a5 cos(9u)

Replace cos(u), cos(3u), cos(5u), cos(7u), and cos(9u) by their series expansions found in
(6-66).
3. Ry (dB) =26 = 201log,o(R) or R, (voltage ratio) = 20. Determine z;, by equating R, to
Ty(zp). Thus
Ry =20 = Ty(zy) = cosh[9 cosh_l(zo)]
or

%= cosh[é cosh™1(20)] = 1.0851

Another equation which can, in general, be used to find z, and does not require hyper-
bolic functions is [10]

1/P 1/P
zo:%l<R0+1/R3—l> +<R0—\/R3—1> ] (6-73)

where P is an integer equal to one less than the number of array elements (in this case
P =9).Ry = Hy/H, and z; are identified in Figure 6.22.
4. Substitute

cos(u) = -2
7o 1.0851

in the array factor found in step 2.
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Figure 6.22  Tschebyscheff polynomial of order nine (a) amplitude (b) magnitude.

5. Equate the array factor of step 2, after the substitution from step 4, to 7y(z). The polynomial
Ty(z) is shown plotted in Figure 6.22. Thus

(AF)o = zl(a; — 3a, + Sa; — Ta, + 9as) /7]
+ 22[(4a, — 20a; + 56a, — 120as)/z,°]
+ P[(16a; — 112a, + 432a5)/2y°]
+ 7/ [(64a, — 576as)/7y]
+ 2[(256as)/2°]
= 97— 1202% + 4327° — 57677 + 2567°
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Matching similar terms allows the determination of the a,,’s. That is,

256as/z) = 256 = a5 = 2.0860
(64a, — 576as)/z,’ = =576 > a, = 2.8308
(16a;y — 112a, + 432as)/zy> = 432 Sa; =4.1184

(4a, — 20a; + 56a, — 120as)/zy° = —120 = a, = 5.2073
(Cll - 3a2 =+ 5613 - 7614 =+ 9a5)/Z0 = 9 = al = 58377

In normalized form, the a,, coefficients can be written as

as = 1 as = 0.357
a;=1357  a, =0485
az = 1.974 or as = 0.706
ay = 2.496 a, = 0.890
a; = 2.798 ap = 1

The first (left) set is normalized with respect to the amplitude of the elements at the
edge while the other (right) is normalized with respect to the amplitude of the center
element.

6. Using the first (left) set of normalized coefficients, the array factor can be written as

(AF) ;o = 2.798 cos(u) + 2.496 cos(3u) + 1.974 cos(5u)
+ 1.357 cos(7u) + cos(9u)

where u = [(zd /\) cos 0].

The array factor patterns of Example 6.9 for d = A/4 and A/2 are shown plotted in Figure 6.23.
Since the spacing is less than A(d < A), maxima exist only at broadside (6, = 90°). However when the
spacing is equal to Md = A), two more maxima appear (one toward 6, = 0° and the other toward 6, =
180°). For d = A the array has four maxima, and it acts as an end-fire as well as a broadside array.

Table 6.7 lists the maximum element spacing d.. for the various linear and planar
arrays, including Dolph-Tschebyscheff arrays, in order to maintain either one or two amplitude
maxima.

To better illustrate how the pattern of a Dolph-Tschebyscheff array is formed from the
Tschebyscheff polynomial, let us again consider the 10-element array whose corresponding
Tschebyscheff polynomial is of order 9 and is shown plotted in Figure 6.22. The abscissa of Fig-
ure 6.22, in terms of the spacing between the elements (d) and the angle 0, is given by (6-72) or

7 =2 COS U = 7 COS (ﬂTd cos 0) = 1.0851 cos <”Td cos 0) (6-74)

For d = \/4,A/2,3\/4, and A the values of z for angles from 6 = 0° to 90° to 180° are shown
tabulated in Table 6.9. Referring to Table 6.9 and Figure 6.22, it is interesting to discuss the pattern
formation for the different spacings.
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Figure 6.23  Array factor power pattern of a N = 10 element broadside Dolph-Tschebyscheff array.

1. d=M\4,N=10,R, =20
At 0 = 0° the value of z is equal to 0.7673 (point A). As 0 attains larger values, z increases
until it reaches its maximum value of 1.0851 for & = 90°. Beyond 90°, z begins to decrease and
reaches its original value of 0.7673 for & = 180°. Thus for d = A/4, only the Tschebyscheff
polynomial between the values 0.7673 < z < 1.0851(A < z < z;) is used to form the pattern
of the array factor.

TABLE 6.9 Values of the Abscissa z as a Function of 0 for a 10-Element Dolph-Tschebyscheff Array
with R, = 20

d=21/4 d=21/2 d=3)/4 d=2>\
0 z (Eq. 6-74) z (Eq. 6-74) z (Eq. 6-74) z (Eq. 6-74)
0° 0.7673 0.0 -0.7673 —1.0851
10° 0.7764 0.0259 —0.7394 —1.0839
20° 0.8028 0.1026 —0.6509 —1.0657
30° 0.8436 0.2267 —0.4912 —0.9904
40° 0.8945 0.3899 -0.2518 —0.8049
50° 0.9497 0.5774 0.0610 —0.4706
60° 1.0025 0.7673 0.4153 0.0
70° 1.0462 0.9323 0.7514 0.5167
80° 1.0750 1.0450 0.9956 0.9276
90° 1.0851 1.0851 1.0851 1.0851
100° 1.0750 1.0450 0.9956 0.9276
110° 1.0462 0.9323 0.7514 0.5167
120° 1.0025 0.7673 0.4153 0.0
130° 0.9497 0.5774 0.0610 —0.4706
140° 0.8945 0.3899 —-0.2518 —-0.8049
150° 0.8436 0.2267 —0.4912 —0.9904
160° 0.8028 0.1026 —0.6509 —1.0657
170° 0.7764 0.0259 —-0.7394 —1.0839

180° 0.7673 0.0 —0.7673 —1.0851
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2.d=A/2,N=10,R, =20
At 8 = 0° the value of z is equal to O (point B). As € becomes larger, z increases until it
reaches its maximum value of 1.0851 for 8 = 90°. Beyond 90°, z decreases and comes back
to the original point for # = 180°. For d = A/2, a larger part of the Tschebyscheff polynomial
isused (0 <z < 1.0851;B <z < zg).
3. d=3\/4,N =10,R, =20
For this spacing, the value of z for § = 0° is —0.7673 (point C), and it increases as 8 becomes
larger. It attains its maximum value of 1.0851 at § = 90°. Beyond 90°, it traces back to its
original value (—=0.7673 < z < zp; C < 2 < 7).
4. d=MN=10,R;, =20

As the spacing increases, a larger portion of the Tschebyscheff polynomial is used to form the
pattern of the array factor. When d = A, the value of z for 8 = 0° is equal to —1.0851 (point D) which
in magnitude is equal to the maximum value of z. As € attains values larger than 0°, z increases until
it reaches its maximum value of 1.0851 for 6 = 90°. At that point the polynomial (and thus the array
factor) again reaches its maximum value. Beyond € = 90°, z and in turn the polynomial and array
factor retrace their values (—1.0851 <z < +1.0851; D < z < 7). For d = A there are four maxima,
and a broadside and an end-fire array have been formed simultaneously.

It is often desired in some Dolph-Tschebyscheff designs to take advantage of the largest possible
spacing between the elements while maintaining the same level of all minor lobes, including the
one toward € = 0° and 180°. In general, as well as in Example 6.8 (Figure 6.20), the only minor
lobe that can exceed the level of the others, when the spacing exceeds a certain maximum spacing
between the elements, is the one toward end fire (§ = 0° or 180° or z = —1 in Figure 6.21 or Fig-
ure 6.22). The maximum spacing which can be used while meeting the requirements is obtained using
(6-72) or

Z = g cos(u) = z; cos (”Td cos 0) (6-75)

The requirement not to introduce a minor lobe with a level exceeding the others is accomplished by
utilizing the Tschebyscheff polynomial up to, but not going beyond z = —1. Therefore, for § = 0°
or 180°

d
~1 > zycos (” ;a> (6-76)
or
A 1
d... <Zcos™l|—— -
o < < ZO) (6-76a)

Equation (6-76a) provides the maximum spacing d,,,. With this separation, for a given broadside
Tschebyscheff array with fixed number of N elements and specified side lobe level, the array factor
maintains the same side lobe level for all of its minor lobes. There is another element separation d,,,
referred to as optimum separation, which, for a broadside Tschebyscheff array with fixed number of

elements and side lobe level, leads to smallest possible HPBW, and it is

cos—l(l/w]

T

dop = 1 [1 - (6-76b)
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given by [14]
7=cosh[(ﬁ>ln (R+ VR2—1>] (6-76¢)

where R represents the side lobe level (as a voltage ratio).
Design curves for d,,,, = dp;, (from —10 dB to —100 dB), for a broadside Dolph-Tschebyscheff
array with elements N = 10, 20, 30, and 40, are displayed in Figure 6.24(b). As expected, the max-
imum/optimum element separation, for each array with fixed number of elements, it gets smaller as
the side lobe level decreases. Also the design curves for d,,,, = dy,;, as a function of the number
of elements, N = 3 — 20 for side lobe levels —30, —40, —50, and —60 dB, are displayed in Figure
6.24(b). As expected, for each of the side lobe levels, the maximum/optimum element separation
increases as the number of elements increase.

The excitation coefficients of a Dolph-Tschebyscheff array can be derived using various doc-
umented techniques [11]—[13] and others. One method, whose results are suitable for computer
calculations, is that by Barbiere [11]. The coefficients using this method can be obtained using

-

f(_l)M—q(Zo)M—l (g+M-2)!2M - 1)

= (g—=mlg+n—-DHIM—qg)! (6-77a)
for even 2M elements
n=12..M
n =3 M+1
Z (— M=+ (20D (g +M—2)\(2M)
= ex(g=mig+n=2){M—-qg+1)! (6-77b)

for odd 2M + 1 elements
n=12..M+1

2 n=1

where ¢, = {
1 n#1

C. Beamwidth and Directivity

For large Dolph-Tschebyscheff arrays scanned not too close to end-fire and with side lobes in the

range from —20 to —60 dB, the half-power beamwidth and directivity can be found by introducing

a beam broadening factor given approximately by [4]

) 2
f=1+0.636 { ) cosh [\/ (cosh™! Ry)? — 71'2] } (6-78)

where R, is the major-to-side lobe voltage ratio. The beam broadening factor is plotted in Fig-
ure 6.25(a) as a function of side lobe level (in dB).
The half-power beamwidth of a Dolph-Tschebyscheff array can be determined by

1. calculating the beamwidth of a uniform array (of the same number of elements and spacing)
using (6-22a) or reading it off Figure 6.12

2. multiplying the beamwidth of part (1) by the appropriate beam broadening factor f computed
using (6-78) or reading it off Figure 6.25(a)

The same procedure can be used to determine the beamwidth of arrays with a cosine-on-a-pedestal
distribution [4].
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Figure 6.24 Maximum/optimum element seperation for broadside Dolph-Tschebyscheff array as a function
of side lobe level and number of elements.
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Figure 6.25 Beam broadening factor and directivity of Tschebyscheff arrays. (Source: R. S. Elliott,
“Beamwidth and Directivity of Large Scanning Arrays,” First of Two Parts, The Microwave Journal, Decem-
ber 1963).

The beam broadening factor f can also be used to determine the directivity of large Dolph-
Tschebyscheff arrays, scanned near broadside, with side lobes in the —20 to —60 dB range [4].
That is,

2
2R;

Dy = n (6-79)

(L+d)

1+ (RS = 1)f

which is shown plotted in Figure 6.25(b) as a function of L + d (in wavelengths).
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From the data in Figure 6.25(b) it can be concluded that:

1. The directivity of a Dolph-Tschebyscheff array, with a given side lobe level, increases as the
array size or number of elements increases.

2. For a given array length, or a given number of elements in the array, the directivity does not
necessarily increase as the side lobe level decreases. As a matter of fact, a —15 dB side lobe
array has smaller directivity than a —20 dB side lobe array (see Figure 6.27). This may not be
the case for all other side lobe levels.

The beamwidth and the directivity of an array depend linearly, but not necessarily at the same
rate, on the overall length or total number of elements of the array. Therefore, the beamwidth and
directivity must be related to each other. For a uniform broadside array this relation is [4]

Dy = (6-80)

where 0, is the 3-dB beamwidth (in degrees). The above relation can be used as a good approxima-
tion between beamwidth and directivity for most linear broadside arrays with practical distributions
(including the Dolph-Tschebyscheff array). Equation (6-80) states that for a linear broadside array
the product of the 3-dB beamwidth and the directivity is approximately equal to 100. This is analo-
gous to the product of the gain and bandwidth for electronic amplifiers.

D. Design

The design of a Dolph-Tschebyscheff array is very similar to those of other methods. Usually a
certain number of parameters is specified, and the remaining are obtained following a certain pro-
cedure. In this section we will outline an alternate method that can be used, in addition to the one

outlined and followed in Example 6.9, to design a Dolph-Tschebyscheff array. This method leads to
the excitation coefficients more directly.

Specify

a. The side lobe level (in dB).
b. The number of elements.

Design Procedure
a. Transform the side lobe level from decibels to a voltage ratio using
Ry(Voltage Ratio) = [Ry(VR)] = 10Fo(dB)/20 (6-81)
b. Calculate P, which also represents the order of the Tschebyscheff polynomial, using
P = number of elements — 1

c. Determine z; using (6-73) or

2 = cosh %cosh_l[Ro(VR)]] (6-82)

o

. Calculate the excitation coefficients using (6-77a) or (6-77b).
e. Determine the beam broadening factor using (6-78).
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f. Calculate using (6-22a) the half-power beamwidth of a uniform array with the same number
of elements and spacing between them.

g. Find the half-power beamwidth of the Tschebyscheff array by multiplying the half-power
beamwidth of the uniform array by the beam broadening factor.

h. The maximum spacing between the elements should not exceed that of (6-76a).

i. Determine the directivity using (6-79).

j. The number of minor lobes for the three-dimensional pattern on either side of the main maxi-
mum (0° < 8 < 90°), using the maximum permissible spacing, is equal to N — 1.

k. Calculate the array factor using (6-61a) or (6-61b).

This procedure leads to the same results as any other.

Example 6.10
Calculate the half-power beamwidth and the directivity for the Dolph-Tschebyscheff array of

Example 6.9 for a spacing of A./2 between the elements.
Solution: For Example 6.9,
Ry =26dB = R, =20 (voltage ratio)
Using (6-78) or Figure 6.24(a), the beam broadening factor f is equal to
f=1.079

According to (6-22a) or Figure 6.12, the beamwidth of a uniform broadside array with L 4+ d = 5\
is equal to

0, =10.17°
Thus the beamwidth of a Dolph-Tschebyscheff array is equal to
0, = 10.17°f = 10.17°(1.079) = 10.97°
The directivity can be obtained using (6-79), and it is equal to

2(20)2
Dy = (20 = 9.18 (dimensionless) = 9.63 dB

1+102 - -85

which closely agrees with the results of Figure 6.24(b).

In designing nonuniform arrays, the amplitude distribution between the elements is used to con-
trol the side lobe level. Shown in Figure 6.26 are the excitation amplitude distributions of Dolph-
Tschebyscheff arrays each with N = 10 elements, uniform element spacing of d = A/4, and different
side lobe levels. It is observed that as the side lobe level increases the distribution from the center ele-
ment(s) toward those at the edges is smoother and monotonically decreases for all levels except that
of —20 dB. For this particular design (N = 10,d = 0.25)), the smallest side lobe level, which still
maintains a monotonic amplitude distribution from the center toward the edges, is about —21.05 dB,
which is also displayed in Figure 6.26. Smaller side lobe levels than —20 dB will lead to even more
abrupt amplitude distribution at the edges.
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Figure 6.26 Amplitude distribution, for different side lobe levels, of a Dolph-Tschebyscheff array with
N =10,d = \/4.

In designing nonuniform arrays, there is a compromise between side lobe level and half-power
beamwidth/directivity. While the side lobe level decreases, the half-power beamwidth (HPBW)
decreases and the directivity usually increases. This is demonstrated in Figure 6.27 for a 10-element
Dolph-Tschebyscheff linear array with a uniform spacing of A/4 between the elements. Similar
trends can be expected for other designs.
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Figure 6.27 Directivity and half-power beamwidth versus side lobe level for a Dolph-Tschebyscheff array of
N =10,d = \/4.
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6.8.4 Tschebysheff Design: Scanning

In Section 6.8.3, the formulation for the broadside (6, = 90°) array factor design was developed.
The Tschebyscheff design can be extended to allow for scanning the main beam in other directions
(0° < 6, < 180°) while maintaining all the minor lobes at the same level. The approach is to utilize
(6-21), which allows the phase excitation for scanning the main beam toward any angle 6, in the
angular range of 0° < 6, < 180°. By doing this, we can rewrite (6-21) as

y = kd(cos 0 — cos ) (6-83)

while (6-75) can be expressed as
Z =z cos[kd(cos § — cos 0)] = z cos ”Td(cos 6 — cos 00)] (6-84)

The maximum spacing d,,,,, while allowing all minor lobes at the same level, can be derived
in a manner similar to (6-75)—(6-76a) but utilizing (6-84) in this case. As before, the requirement
not to introduce a minor lobe with a level exceeding the others is accomplished by utilizing the
Tschebyscheff polynomial up to, but not beyond z = —1 in Figure 6.21. Doing this, (6-76) can be
written for & = 0° or 180°, while allowing 0° < 6, < 180°, as

=1 > zycos

ﬂdmax
3 (1 —cosby) (6-85)

When solved for d,,,,, equation (6-85) reduces to

dmax < s s_l <_l> (6-85a)

co
(1 —cos ) 20

To illustrate the design procedure, an example is used.

Example 6.11

Design a 10-element (N = 10) scanning Tschebyscheff array that meets the following specifica-
tions:

¢ The maximum of the main beam directed toward 6 = 60°(6, = 60°).

¢ All minor lobes are maintained at the same level of —26 dB over the entire angular range
of 0° < 0 < 180°.

¢ Use the maximum allowable spacing d,,,, between the elements.

* Plot the pattern and compare it with that of the corresponding design but with the maximum
of the main beam directed toward § = 90° (broadside design; 6, = 90°).

Solution:

¢ Using (6-82), z, = 1.0851, which is the same as for the broadside design of Example 6.9.

e Using (6-85a), d,,x = 0.5821A while for the broadside design of Example 6.9 it is
dnax = 0.8731.

max
¢ The amplitude excitation coefficients are the same as those of Example 6.9.
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¢ The normalized amplitude pattern for the scanning design displayed in Figure 6.28, where
it is compared with the pattern of the corresponding broadside design. As expected, the
pattern for the scanned design is asymmetrical about the § = 90° direction while that of the
broadside design is symmetrical. Also, it is evident that both designs maintain the —26 dB
side lobe level over the entire 0° < 6 < 180° angular range.
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=0.58212)
=0.87312)

Figure 6.28 Normalized amplitude patterns of 10-element Tschebyscheff design for scanning and broad-
side arrays.

An interactive MATLAB and FORTRAN computer program entitled Arrays has been developed,
and it performs the analysis for uniform and nonuniform linear arrays, and uniform planar arrays.
The MATLAB version of the program also analyzes uniform circular arrays. The description of the
program is provided in the corresponding READ ME file in the publisher’s website for this book.

6.9 SUPERDIRECTIVITY

Antennas whose directivities are much larger than the directivity of a reference antenna of the same
size are known as superdirective antennas. Thus a superdirective array is one whose directivity is
larger than that of a reference array (usually a uniform array of the same length). In an array, superdi-
rectivity is accomplished by inserting more elements within a fixed length (decreasing the spacing).
Doing this leads eventually to very large magnitudes and rapid changes of phase in the excitation
coefficients of the elements of the array. Thus adjacent elements have very large and oppositely
directed currents. This necessitates a very precise adjustment of their values. Associated with this
are increases in reactive power (relative to the radiated power) and the Q of the array.



346 ARRAYS: LINEAR, PLANAR, AND CIRCULAR

6.9.1 Efficiency and Directivity

Because of the very large currents in the elements of superdirective arrays, the ohmic losses increases
and the antenna efficiency decreases very sharply. Although practically the ohmic losses can be
reduced by the use of superconductive materials, there is no easy solution for the precise adjustment
of the amplitudes and phases of the array elements. High radiation efficiency superdirective arrays
can be designed utilizing array functions that are insensitive to changes in element values [15].

In practice, superdirective arrays are usually referred to as super gain. However, super gain is a
misnomer because such antennas have actual overall gains (because of very low efficiencies) less
than uniform arrays of the same length. Although significant superdirectivity is very difficult and
usually very impractical, a moderate amount can be accomplished. Superdirective antennas are very
intriguing, and they have received much attention in the literature.

The length of the array is usually the limiting factor to the directivity of an array. Schelkunoff
[16] pointed out that theoretically very high directivities can be obtained from linear end-fire arrays.
Bowkamp and de Bruijn [17], however, concluded that theoretically there is no limit in the directivity
of a linear antenna. More specifically, Riblet [10] showed that Dolph-Tschebyscheft arrays with
element spacing less than A/2 can yield any desired directivity. A numerical example of a Dolph-
Tschebyscheff array of nine elements, A/32 spacing between the elements (total length of A/4),
and a 1/19.5 (—25.8 dB) side lobe level was carried out by Yaru [8]. It was found that to produce a
directivity of 8.5 times greater than that of a single element, the currents on the individual elements
must be on the order of 14 x 10® amperes and their values adjusted to an accuracy of better than one
part in 10'". The maximum radiation intensity produced by such an array is equivalent to that of a
single element with a current of only 19.5 X 10~3 amperes. If the elements of such an array are 1-cm
diameter, of copper, A/2 dipoles operating at 10 MHz, the efficiency of the array is less than 10~14%.

6.9.2 Designs with Constraints

To make the designs more practical, applications that warrant some superdirectivity should incorpo-
rate constraints. One constraint is based on the sensitivity factor, and it was utilized for the design of
superdirective arrays [18]. The sensitivity factor (designated as K) is an important parameter which
is related to the electrical and mechanical tolerances of an antenna, and it can be used to describe its
performance (especially its practical implementation). For an N-element array, such as that shown
in Figure 6.5(a), it can be written as [18]

N

2
D layl

n=1

K=—"—> (6-86)

where a,, is the current excitation of the nth element, and r; is the distance from the nth element to
the far-field observation point (in the direction of maximum radiation).

In practice, the excitation coefficients and the positioning of the elements, which result in a desired
pattern, cannot be achieved as specified. A certain amount of error, both electrical and mechanical,
will always be present. Therefore the desired pattern will not be realized exactly, as required. How-
ever, if the design is accomplished based on specified constraints, the realized pattern will approxi-
mate the desired one within a specified deviation.
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To derive design constraints, the realized current excitation coefficients ¢,’s are related to the
desired ones a,,’s by

¢, =a,+a,a,=a,(1+a,) (6-86a)

where a,,a, represents the error in the nth excitation coefficient. The mean square value of «,, is
denoted by

2 2
e = (la,|) (6-86b)
To take into account the error associated with the positioning of the elements, we introduce

_ (ko)?
)

52 (6-86¢)

where o is the root-mean-square value of the element position error. Combining (6-86b) and (6-86¢)
reduces to

A’ =82 +¢2 (6-86d)

where A is a measure of the combined electrical and mechanical errors.
For uncorrelated errors [18]

KA? = average radiation intensity of realized pattern

maximum radiation intensity of desired pattern

If the realized pattern is to be very close to the desired one, then

KA? < 1A < L\/_ (6-86¢)
X

Equation (6-86e) can be rewritten, by introducing a safety factor S, as

A= WG (6-86f)

S is chosen large enough so that (6-86e) is satisfied. When A is multiplied by 100, 100A represents
the percent tolerance for combined electrical and mechanical errors.

The choice of the value of S depends largely on the required accuracy between the desired and
realized patterns. For example, if the focus is primarily on the realization of the main beam, a value
of S = 10 will probably be satisfactory. For side lobes of 20 dB down, S should be about 1,000. In
general, an approximate value of S should be chosen according to

S~ 10 x 104/10 (6-86g)

where b represents the pattern level (in dB down) whose shape is to be accurately realized.

The above method can be used to design, with the safety factor K constrained to a certain value,
arrays with maximum directivity. Usually one first plots, for each selected excitation distribution and
positioning of the elements, the directivity D of the array under investigation versus the correspond-
ing sensitivity factor K (using 6-86) of the same array. The design usually begins with the excitation
and positioning of a uniform array (i.e., uniform amplitudes, a progressive phase, and equally spaced
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elements). The directivity associated with it is designated as D, while the corresponding sensitivity
factor, computed using (6-86), is equal to K, = 1 /N.

As the design deviates from that of the uniform array and becomes superdirective, the values
of the directivity increase monotonically with increases in K. Eventually a maximum directivity is
attained (designated as D, ), and it corresponds to a K = K, ; beyond that point (K > K. ), the
directivity decreases monotonically. The antenna designer should then select the design for which
Dy<D <D, and Ky =1/N <K < K.

The value of D is chosen subject to the constraint that K is a certain number whose corresponding
tolerance error A of (6-86f), for the desired safety factor S, can be achieved practically. Tolerance
errors of less than about 0.3 percent are usually not achievable in practice. In general, the designer
must trade-off between directivity and sensitivity factor; larger D’s (provided D < D,,,,) result in
larger K’s (K < K,,,,,), and vice versa.

A number of constrained designs can be found in [18]. For example, an array of cylindrical
monopoles above an infinite and perfectly conducting ground plane was designed for optimum direc-
tivity at f = 30 MHz, with a constraint on the sensitivity factor. The spacing d between the elements
was maintained uniform.

For a four-element array, it was found that for d = 0.3\ the maximum directivity was 14.5 dB
and occurred at a sensitivity factor of K = 1. However for d = 0.1A the maximum directivity was
up to 15.8 dB, with the corresponding sensitivity factor up to about 10°. At K, = 1/N = 1/4, the
directivities for d = 0.3\ and 0.1\ were about 11.3 and 8 dB, respectively. When the sensitivity
factor was maintained constant and equal to K = 1, the directivity for d = 0.3\ was 14.5 dB and
only 11.6 dB for d = 0.1A. It should be noted that the directivity of a single monopole above an
infinite ground plane is twice that of the corresponding dipole in free-space and equal to about 3.25
(or about 5.1 dB).

6.10 PLANAR ARRAY

In addition to placing elements along a line (to form a linear array), individual radiators can be posi-
tioned along a rectangular grid to form a rectangular or planar array. Planar arrays provide additional
variables which can be used to control and shape the pattern of the array. Planar arrays are more ver-
satile and can provide more symmetrical patterns with lower side lobes. In addition, they can be used
to scan the main beam of the antenna toward any point in space. Applications include tracking radar,
search radar, remote sensing, communications, and many others.

A planar array of slots, used in the Airborne Warning and Control System (AWACS), is shown in
Figure 6.29. It utilizes rectangular waveguide sticks placed vertically, with slots on the narrow wall
of the waveguides. The system has 360° view of the area, and at operating altitudes can detect targets
hundreds of kilometers away. It is usually mounted at a height above the fuselage of an aircraft.

6.10.1 Array Factor

To derive the array factor for a planar array, let us refer to Figure 6.30. If M elements are initially
placed along the x-axis, as shown in Figure 6.30(a), the array factor of it can be written according to
(6-52) and (6-54) as

M
AF = 2 Iml ej(m—l)(kdX sin 0 cos p+p,) (6-87)

m=1

where [, is the excitation coefficient of each element. The spacing and progressive phase shift
between the elements along the x-axis are represented, respectively, by d, and f,. If N such arrays
are placed next to each other in the y-direction, a distance d,, apart and with a progressive phase f,,
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NG

Figure 6.29 AWACS antenna array of waveguide slots. (PHOTOGRAPH COURTESY: Northrop Grumman
Corporation).

a rectangular array will be formed as shown in Figure 6.30(b). The array factor for the entire planar
array can be written as

N M
AF = Z 1, Z Imle/'(m—l)(kdx sin 6 cos ¢+p,) e/'(n—l)(kdy sin @ sin ¢+4,) (6-87a)
n=1 m=1
or
AF=5,5, (6-88)
where
M
Sxm — Z Imlei(m_l)(kdx sin @ cos ¢p+p,) (6—88a)
m=1
N . .
Syn — Z Ilne](n—l)(ka’y sin @ sin ¢+ﬂy) (6-88b)

1

N
Il

Equation (6-88) indicates that the pattern of a rectangular array is the product of the array factors of
the arrays in the x- and y-directions.
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If the amplitude excitation coefficients of the elements of the array in the y-direction are propor-
tional to those along the x, the amplitude of the (i, n)th element can be written as

Imn = mllln (6'89)

If in addition the amplitude excitation of the entire array is uniform (7, = I;)), (6-87a) can be
expressed as

M N
AF = [, 2 plm=1)(kd, sin @ cos ¢=+f,) z /(= Dkdy sin 0sin $-+fy) (6-90)

m=1 n=1
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According to (6-6), (6-10), and (6-10c), the normalized form of (6-90) can also be written as

. (M .
1 s1n<?y/x) 1 sm(%wy) (6-91)
AF,(0,¢) =1~ — 22t =
M Sin (_X) N . Wy
2 Sin 7
h
where ' (6-912)
v, =kd, sinfcos ¢ + f,

(6-91b)

Wy, = kdy sin @ sin ¢ + By

When the spacing between the elements is equal or greater than A/2, multiple maxima of equal
magnitude can be formed. The principal maximum is referred to as the major lobe and the remaining
as the grating lobes. A grating lobe is defined as “a lobe, other than the main lobe, produced by an
array antenna when the inter element spacing is sufficiently large to permit the in-phase addition of
radiated fields in more than one direction.” To form or avoid grating lobes in a rectangular array,
the same principles must be satisfied as for a linear array. To avoid grating lobes in the x-z and y-z
planes, the spacing between the elements in the x- and y-directions, respectively, must be less than
M2 (d, <)/2andd; <A/[2).

Table 6.7 lists the maximum element spacing d.,. (for either d,d, or both) for the various uni-

form and nonuniform arrays, including planar arrays, in order to maintain either one or two ampli-
tude maxima.

For a rectangular array, the major lobe and grating lobes of S, and S, in (6-88a) and (6-88b)
are located at

kd,sinfcos¢ + f,. =+2mnx m=0,1,2,... (6-92a)
kdy sin @ sin ¢ + ﬂy =+2nr n=0,1,2,... (6-92b)

The phases g, and g, are independent of each other, and they can be adjusted so that the main beam
of S, is not the same as that of Sy, However, in most practical applications it is required that the
conical main beams of S, and S, intersect and their maxima be directed toward the same direction.
If it is desired to have only one main beam that is directed along 6 = 0y and ¢ = ¢, the progressive

phase shift between the elements in the x- and y-directions must be equal to

P, = —kd, sin 6 cos ¢y

(6-93a)
By = —kd,, sin 6 sin ¢ (6-93b)
When solved simultaneously, (6-93a) and (6-93b) can also be expressed as
d
yox
tan gy = = (6-94a)
°7 pd,

2 2
sin® 0, = (I%‘) + (%) (6-94b)
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The principal maximum (m = n = 0) and the grating lobes can be located by

kd (sin 6 cos ¢ — sin 6 cos ¢) = +2mn, m=0,1,2,... (6-95a)
kdy(sin 0sin ¢ — sin 6 sin ¢y) = +2nm, n=0,1,2,... (6-95b)
or
. . m
s1n900s¢—smo9000s¢0=id—, m=20,1,2,... (6-96a)
X
sin 0 sin ¢ — sin 0, sin b, =¢’Zl—, n=0,1,2,... (6-96b)
¥

which, when solved simultaneously, reduce to

| [ sin b sin ¢ £ ni/d,
= tan~— -
¢ =tan [sin 0y cos ¢y + m)»/dx] (6-972)
and
i sin 8, sin ¢y = n\/d
§— sin-1 |50 0, cos ¢y + mr/d, ! o .¢o /d, 697b)
cos ¢ sin ¢

In order for a true grating lobe to occur, both forms of (6-97b) must be satisfied simultaneously (i.e.,
lead to the same @ value).

To demonstrate the principles of planar array theory, the three-dimensional pattern of a 5 X 5
element array of uniform amplitude, §, = f, = 0, and d, = d, = 1/4, is shown in Figure 6.31. The
maximum is oriented along 8, = 0° and only the pattern above the x-y plane is shown. An identical
pattern is formed in the lower hemisphere which can be diminished by the use of a ground plane.

To examine the pattern variation as a function of the element spacing, the three-dimensional pat-
tern of the same 5 X 5 element array of isotropic sources with d, = d,, = 1/2 and f, = p, = O is dis-
played in Figure 6.32. As contrasted with Figure 6.31, the pattern of Figure 6.32 exhibits complete
minor lobes in all planes. Figure 6.33 displays the corresponding two-dimensional elevation patterns
with cuts at ¢ = 0° (x-z plane), ¢ = 90° (y-z plane), and ¢ = 45°. The two principal patterns (¢ = 0°
and ¢ = 90°) are identical. The patterns of Figures 6.31 and 6.32 display a fourfold symmetry.

As discussed previously, arrays possess wide versatility in their radiation characteristics. The
most common characteristic of an array is its scanning mechanism. To illustrate that, the three-
dimensional pattern of the same 5 X 5 element array, with its maximum oriented along the 6, =
30°, ¢py = 45°, is plotted in Figure 6.34. In Figure 6.34(a) is plotted in ‘cylindrical’ format while in
Figure 6.34(b) is plotted in ‘spherical” format. The element spacing is d, = d,, = A/2. The maximum
is found in the first quadrant of the upper hemisphere. The two-dimensional patterns are shown
in Figure 6.35, and they exhibit only a twofold symmetry. The principal-plane pattern (¢p = 0° or
¢ = 90°) is normalized relative to the maximum which occurs at 6, = 30°, ¢py = 45°. Its maximum
along the principal planes (¢ = 0° or ¢ = 90°) occurs when 6 = 21° and it is 17.37 dB down from
the maximum at 6, = 30°, ¢, = 45°.

To illustrate the formation of the grating lobes, when the spacing between the elements is large,
the three-dimensional pattern of the 5 X 5 element array with d, = d,, = A and f, = p, = 0 are dis-
played in Figure 6.36. Its corresponding two-dimensional elevation patterns at ¢ = 0°(¢p = 90°) and
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Figure 6.31 Three-dimensional antenna pattern of a planar array of isotropic elements with a spacing of
d, = d, =\/4, and equal amplitude and phase excitations.

¢ = 45° are exhibited in Figure 6.37. Besides the maxima along # = 0° and 8 = 180°, additional
maxima with equal intensity, referred to as grating lobes, appear along the principal planes (x-z and
y-z planes) when 6 = 90°. Further increase of the spacing to d, = d,, = 2\ would result in additional
grating lobes.
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Figure 6.32 Three-dimensional antenna pattern of a planar array of isotropic elements with a spacing of
d, = d, =\/2, and equal amplitude and phase excitations.
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Figure 6.33 Two-dimensional antenna patterns of a planar array of isotropic elements with a spacing of
d, = d, =\/2, and equal amplitude and phase excitations.

The array factor of the planar array has been derived assuming that each element is an isotropic
source. If the antenna is an array of identical elements, the total field can be obtained by applying
the pattern multiplication rule of (6-5) in a manner similar as for the linear array.

When only the central element of a large planar array is excited and the others are passively ter-
minated, it has been observed experimentally that additional nulls in the pattern of the element are
developed which are not accounted for by theory which does not include coupling. The nulls were
observed to become deeper and narrower [19] as the number of elements surrounding the excited
element increased and approached a large array. These effects became more noticeable for arrays
of open waveguides. It has been demonstrated [20] that dips at angles interior to grating lobes are
formed by coupling through surface wave propagation. The coupling decays very slowly with dis-
tance, so that even distant elements from the driven elements experience substantial parasitic exci-
tation. The angles where these large variations occur can be placed outside scan angles of interest
by choosing smaller element spacing than would be used in the absence of such coupling. Because
of the complexity of the problem, it will not be pursued here any further but the interested reader is
referred to the published literature.

6.10.2 Beamwidth

The task of finding the beamwidth of nonuniform amplitude planar arrays is quite formidable.
Instead, a very simple procedure will be outlined which can be used to compute these parameters for
large arrays whose maximum is not scanned too far off broadside. The method [20] utilizes results
of a uniform linear array and the beam broadening factor of the amplitude distribution.
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Figure 6.34 Three-dimensional antenna patterns of a planar array of isotropic elements with a spacing of

d, = d, = A/2, equal amplitude, and progressive phase excitation.
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Figure 6.35 Two-dimensional antenna patterns of a planar array of isotropic elements with a spacing of
d, = d, = \/2, equal amplitude, and progressive phase excitation.
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Figure 6.36  Three-dimensional antenna pattern of a planar array of isotropic elements with a spacing of
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Figure 6.37 Two-dimensional antenna patterns of a planar array of isotropic elements with a spacing of
d, = d, =}, and equal amplitude and phase excitations.

The maximum of the conical main beam of the array is assumed to be directed toward 6, ¢
as shown in Figure 6.38. To define a beamwidth, two planes are chosen. One is the elevation plane
defined by the angle ¢ = ¢, and the other is a plane that is perpendicular to it. The corresponding
half-power beamwidth of each is designated, respectively, by ®, and ¥;. For example, if the array
maximum is pointing along 6, = z/2 and ¢, = 7 /2, ®, represents the beamwidth in the y-z plane
and ¥, the beamwidth in the x-y plane.

For a large array, with its maximum near broadside, the elevation plane half-power beamwidth
®,, is given approximately by [21]

1
O, =
" \/cos2 6, [@;02 cos? ¢y + G)y‘o2 sin” ¢ (6-98)

where O, represents the half-power beamwidth of a broadside linear array of M elements. Similarly,
0, represents the half-power beamwidth of a broadside array of N elements.

The values of ©,, and ©, can be obtained by using previous results. For a uniform distribu-
tion, for example, the values of ®,, and ©,, can be obtained by using, respectively, the lengths
(L,+d,)/\ and (Ly+d,) /A and reading the values from the broadside curve of Figure 6.12. For a
Tschebyscheff distribution, the values of ©, and ©, are obtained by multiplying each uniform dis-
tribution value by the beam broadening factor of (6-78) or Figure 6.25(a). The same concept can be
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Figure 6.38 Half-power beamwidths for a conical main beam oriented toward 6 = 6, ¢ = ¢p,. (SOURCE:
R. S. Elliott, “Beamwidth and Directivity of Large Scanning Arrays,” Last of Two Parts, The Microwave Jour-
nal, January 1964.).

used to obtain the beamwidth of other distributions as long as their corresponding beam broadening
factors are available.
For a square array (M = N, 0,5 = ©,), (6-95) reduces to

0, = 0,ysecly = Oy sec b, (6-98a)

Equation (6-98a) indicates that for 6, > 0 the beamwidth increases proportionally to sec, =
1/cos 6. The broadening of the beamwidth by sec 6y, as 6 increases, is consistent with the reduction
by cos 6§, of the projected area of the array in the pointing direction.

The half-power beamwidth ¥, in the plane that is perpendicular to the ¢ = ¢ elevation, is given
by [20]

T
Wy, = : 6-99
\/ 02 sin’ g + O cos” iy (6-99)

and it does not depend on 6. For a square array, (6-99) reduces to
¥, =0,,=0, (6-99a)

The values of ©,, and ©,, are the same as in (6-98) and (6-98a).
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For a planar array, it is useful to define a beam solid angle ©, by
Q,=0,¥, (6-100)

as it was done in (2-23), (2-24), and (2-26a). Using (6-98) and (6-99), (6-100) can be expressed as

0,00, sec b

1/2 1/2
L, 02, , / (6-101)
sin” ¢ + @—zcos bo

0

QA:

e’
: 0
lsm2 o + @—; cos? ¢0]

x0

6.10.3 Directivity

The directivity of the array factor AF(6, ¢) whose major beam is pointing in the 8 = 6, and ¢ = ¢,
direction, can be obtained by employing the definition of (2-22) and writing it as

47[AF(0y, o) I[AF(B, Po)]" | max

0= —— (6-102)
/ / [AF(8, $)I[AF@, $)]* sin 6 d6 de
0 0

A novel method has been introduced [22] for integrating the terms of the directivity expression
for isotropic and conical patterns.

As in the case of the beamwidth, the task of evaluating (6-102) for nonuniform amplitude distri-
bution is formidable. Instead, a very simple procedure will be outlined to compute the directivity of
a planar array using data from linear arrays.

It should be pointed out that the directivity of an array with bidirectional characteristics (two-sided
pattern in free space) would be half the directivity of the same array with unidirectional (one-sided
pattern) elements (e.g., dipoles over ground plane).

For large planar arrays, which are nearly broadside, the directivity reduces to [21]

Dy = mcos6yD,D, (6-103)

where D, and D, are the directivities of broadside linear arrays each, respectively, of length and
number of elements L., M and Ly, N. The factor cos 6, accounts for the decrease of the directivity
because of the decrease of the projected area of the array. Each of the values, D, and D, can be
obtained by using (6-79) with the appropriate beam broadening factor f. For Tschebyscheff arrays,
D, and Dy can be obtained using (6-78) or Figure 6-25(a) and (6-79). Alternatively, they can be
obtained using the graphical data of Figure 6.25(b).

For most practical amplitude distributions, the directivity of (6-103) is related to the beam solid
angle of the same array by

72 32,400
Dy = ™ 2
Q,(rads®) Q4 (degrees”)

(6-104)

where Q, is expressed in square radians or square degrees. Equation (6-104) should be compared
with (2-26) or (2-27) given by Kraus.
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Example 6.12
Compute the half-power beamwidths, beam solid angle, and directivity of a planar square array

of 100 isotropic elements (10 X 10). Assume a Tschebyscheft distribution, A./2 spacing between
the elements, —26 dB side lobe level, and the maximum oriented along 6, = 30°, ¢, = 45°.
Solution: Since in the x- and y-directions
L+d,=L,+d,=5\

and each is equal to L + d of Example 6.10, then

0,9 =0, =1097°
According to (6-98a)

0, = 0,9secl, = 10.97° sec (30°) = 12.67°

and (6-99a)

¥, =0,=1097°
and (6-100)

Q, =0,¥, = 12.67(10.97) = 138.96 (degrees?)

The directivity can be obtained using (6-103). Since the array is square, D, = D, each one is
equal to the directivity of Example 6.10. Thus

Dy = 7 c0s(30°)(9.18)(9.18) = 229.28 (dimensionless) = 23.60 dB
Using (6-104)

Do o 32,400 _ 32,400
0 QA(degreesz) 138.96

= 233.16 (dimensionless) = 23.67 dB

Obviously we have an excellent agreement.

An interactive MATLAB and FORTRAN computer program entitled Arrays has been developed,
and it performs the analysis for uniform and nonuniform linear arrays, and uniform planar arrays.
The MATLAB version of the program also analyzes uniform circular arrays. The description of the
program is provided in the corresponding READ ME file.

6.11 DESIGN CONSIDERATIONS

Antenna arrays can be designed to control their radiation characteristics by properly selecting the
phase and/or amplitude distribution between the elements. It has already been shown that a control
of the phase can significantly alter the radiation pattern of an array. In fact, the principle of scan-
ning arrays, where the maximum of the array pattern can be pointed in different directions, is based
primarily on control of the phase excitation of the elements. In addition, it has been shown that a
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proper amplitude excitation taper between the elements can be used to control the beamwidth and
side lobe level. Typically the level of the minor lobes can be controlled by tapering the distribution
across the array; the smoother the taper from the center of the array toward the edges, the lower the
side lobe level and the larger the half-power beamwidth, and conversely. Therefore a very smooth
taper, such as that represented by a binomial distribution or others, would result in very low side lobe
but larger half-power beamwidth. In contrast, an abrupt distribution, such as that of uniform illumi-
nation, exhibits the smaller half-power beamwidth but the highest side lobe level (about —13.5 dB).
Therefore, if it is desired to achieve simultaneously both a very low side lobe level, as well as a
small half-power beamwidth, a compromise design has to be selected. The Dolph-Tschebyscheff
design of Section 6.8.3 is one such distribution. There are other designs that can be used effectively
to achieve a good compromise between side lobe level and beamwidth. Two such examples are the
Taylor Line-Source (Tschebyscheff-Error) and the Taylor Line-Source (One-Parameter). These are
discussed in detail in Sections 7.6 and 7.7 of Chapter 7, respectively. Both of these are very similar
to the Dolph-Tschebyscheff, with primarily the following exceptions.

For the Taylor Tschebyscheff-Error design, the number of minor lobes with the same level can
be controlled as part of the design; the level of the remaining one is monotonically decreasing.
This is in contrast to the Dolph-Tschebyscheff where all the minor lobes are of the same level.
Therefore, given the same side lobe level, the half-power beamwidth of the Taylor Tschebyscheff-
Error is slightly greater than that of the Dolph-Tschebyscheff. For the Taylor One-Parameter design,
the level of the first minor lobe (closest to the major lobe) is controlled as part of the design; the
level of the remaining ones are monotonically decreasing. Therefore, given the same side lobe level,
the half-power beamwidth of the Taylor One-Parameter is slightly greater than that of the Taylor
Tschebyscheff-Error, which in turn is slightly greater than that of the Dolph-Tschebyscheff design.
More details of these two methods, and other ones, can be found in Chapter 7. However there are
some other characteristics that can be used to design arrays.

Uniform arrays are usually preferred in design of direct-radiating active-planar arrays with a large
number of elements [23]. One design consideration in satellite antennas is the beamwidth which can
be used to determine the “footprint” area of the coverage. It is important to relate the beamwidth to
the size of the antenna. In addition, it is also important to maximize the directivity of the antenna
within the angular sector defined by the beamwidth, especially at the edge-of-the-coverage (EOC)
[23]. For engineering design purposes, closed-form expressions would be desirable.

To relate the half-power beamwidth, or any other beamwidth, to the length of the array in closed
form, it is easier to represent the uniform array with a large number of elements as an aperture. The
normalized array factor for a rectangular array is that of (6-91). For broadside radiation (6, = 0°)
and small spacings between the elements (d, < A and d, < 1), (6-91) can be used to approximate
the pattern of a uniform illuminated aperture. In one principal plane (i.e., x-z plane; ¢ = 0°) of
Figure 6.30, (6-101) reduces for small element spacing and large number of elements to

. (Mkd, . ([ Mkd, . . (kL .
sin 3 sin 6 sin 3 sin @ sin Tsm@

1
(AF),(0,¢=0) = Mk T ST (6-105)
sin 7 sin 6 > sin @ > sin 6

where L, is the length of the array in the x direction. The array factor of (6-105) can be used to repre-
sent the field in a principal plane of a uniform aperture (see Sections 12.5.1, 12.5.2 and Table 12.1).
Since the maximum effective area of a uniform array is equal to its physical area A4, = A, [see
(12-37)], the maximum directivity is equal to

4r 4r 4n
Dy = FAem = ﬁAP = ELXL}, (6-106)
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Therefore the normalized power pattern in the xz-plane, multiplied by the maximum directivity, can
be written as the product of (6-105) and (6-106), and it can be expressed as

2

(6-107)

. (kL. . p
47TLxLy> sin { —= sin
A2 kL,
——siné
5 sin

P0.¢=0) = (

The maximum of (6-107) occurs when 6 = 0°. However, for any other angle 6§ = 6., the maximum
of the pattern occurs when

. (kL .
sin T sinf, | =1 (6-108)
or
¥ ksinf, 2siné, (6-108a)

Therefore to maximize the directivity at the edge 8 = 6. of a given angular sector 0° < 6 < 6., the
optimum aperture dimension must be chosen according to (6-108a). Doing otherwise leads to a
decrease in directivity at the edge-of-the-coverage.

For a square aperture (L, = L,) the maximum value of the normalized power pattern of (6-107)
occurs when 6 = 0°, and it is equal to

L 2
PO = 0°)],,, = 47 <7x> (6-109)

while that at the edge of the covering, using the optimum dimension, is

2

PO=0,)=d4x <%>2<3> (6-110)

T

Therefore the value of the directivity at the edge of the desired coverage (8 = 6,.), relative to its
maximum value at @ = 0°, is

PO =0, 212 : :
il A (-) — 0.4053 (dimensionless) = —3.92 dB 6-111)
PO=0° \z

Thus the variation of the directivity within the desired coverage (0° < 6 < 6,.) is less than 4 dB.

If, for example, the length of the array for a maximum half-power beamwidth coverage is changed
from the optimum or chosen to be optimized at another angle, then the directivity at the edge of the
half-power beamwidth is reduced from the optimum.

Similar expressions have been derived for circular apertures with uniform, parabolic and parabolic
with —10 dB cosine-on-a-pedestal distributions [23], and they can be found in Chapter 12, Sec-
tion 12.7.
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Figure 6.39  Geometry of an N-element circular array.

6.12 CIRCULAR ARRAY

The circular array, in which the elements are placed in a circular ring, is an array configuration
of very practical interest. Over the years, applications span radio direction finding, air and space
navigation, underground propagation, radar, sonar, and many other systems. More recently, circular
arrays have been proposed for wireless communication, and in particular for smart antennas [24].
For more details see Section 16.12.

6.12.1 Array Factor

Referring to Figure 6.39, let us assume that N isotropic elements are equally spaced on the x-y plane
along a circular ring of the radius a. The normalized field of the array can be written as

N

e_ijn
E(r.0.0)= ) 4, —— (6-112)
n=1 n
where R, is the distance from the nth element to the observation point. In general
R, = (r* + a* — 2arcosy)'/? (6-112a)

which for r > a reduces to

R, ~r—acosy,=r—a(a,-a,)=r—asinfcos(¢ — ¢,) (6-112b)
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where

a,-a,=(a,cos¢, +a,sing,) - (a,sindcosd +a,sinfsing +a_cos )
=sinfcos(¢p — ¢,,) (6-112¢)

Thus (6-112) reduces, assuming that for amplitude variations R,, =~ r, to
LA
En(r, 0, d)) _ e Z ane+]ka sin 6 cos(p—a,,) (6-1 13)
r n=1

where
a, = excitation coefficients (amplitude and phase) of nth element

¢, = 27r<%) = angular position of nth element on x-y plane
In general, the excitation coefficient of the nth element can be written as
a, =1I,% (6-114)

where

I, = amplitude excitation of the nth element

@, = phase excitation (relative to the array center) of the nth element

With (6-114), (6-113) can be expressed as

e—jkr
E,(r,0,¢) = p [AF0, )] (6-115)
where
N
AF(0, ¢) = Z Inej[ka sin 0 cos(p—,)+a,,] (6-115a)

n=1

Equation (6-115a) represents the array factor of a circular array of N equally spaced elements.
To direct the peak of the main beam in the (6, ¢) direction, the phase excitation of the nth element
can be chosen to be

a, = —kasin 6, cos(¢py — ¢p,,) (6-116)

n

Thus the array factor of (6-115a) can be written as

N
AF(0, ¢) = Z Inejka[siné' cos(¢p—p,,)—sin O cos(o—¢,,)]

n=1

N
Z Inejka[cos y—Ccos y) (6_1 17)

n=1
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To reduce (6-117) to a simpler form, we define p, as

po = al(sin @ cos ¢ — sin f cos ¢0)2 + (sin @ sin ¢ — sin G, sin (}')0)2]1/2 (6-118)

Thus the exponential in (6-117) takes the form of

ka(cos y — cos y)

_ kpolsin @ cos(¢p — ¢,,) — sin O cos(¢py — ¢,,)]
" [(sin 6 cos ¢ — sin 6, cos ¢)? + (sin O sin ¢ — sin 6, sin ¢p)2]!/2

(6-119)

which when expanded reduces to

ka(cos y — cos y)

4 { cos ¢,,(sin 6 cos ¢ — sin G cos ¢)) + sin ¢,,(sin & sin ¢ — sin 6, sin ) }
=% [(sin @ cos ¢ — sin O cos )2 + (sin O sin ¢ — sin O, sin ¢y)?]!/2

(6-119a)
Defining

sin @ cos ¢ — sin 6 cos ¢
cosé = — - — - - (6-120)
[(sin O cos ¢ — sin O cos )2 + (sin @ sin ¢ — sin O, sin ¢)?]!/2

then

siné = [1 — cos? &]'/2

sin @ sin ¢ — sin 6, sin ¢

=— , —— ; , (6-121)
[(sin @ cos ¢ — sin By cos )2 + (sin O sin ¢ — sin O, sin ¢)2]!/2
Thus (6-119a) and (6-117) can be rewritten, respectively, as
ka(cos y — cosyy)) = kpg(cos ¢, cos & + sin ¢, sin &) = kp, cos(¢p,, — &) (6-122)
S T (6-123)
AF(0, ¢) = Z Inejka(cos y—cosyp) z Inejkpo cos(¢,—&) -
n=1 n=1
where
£t _1 | sin@sin ¢ — sin G, sin ¢
= tan
sin @ cos ¢ — sin 6 cos ¢ (6-123a)

and p, is defined by (6-118).

Equations (6-123), (6-118), and (6-123a) can be used to calculate the array factor once N, [, a, 0,
and ¢, are specified. This is usually very time consuming, even for moderately large values of N.
The three-dimensional pattern of the array factor for a 10-element uniform circular array of ka = 10
is shown in Figure 6.40. The corresponding two-dimensional principal-plane patterns are displayed
in Figure 6.41. As the radius of the array becomes very large, the directivity of a uniform circular
array approaches the value of N, where N is equal to the number of elements. An excellent discussion
on circular arrays can be found in [25].
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Figure 6.40 Three-dimensional amplitude pattern of the array factor for a uniform circular array of N = 10
elements (C/A = ka = 10).
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Figure 6.41 Principal-plane amplitude patterns of the array factor for a uniform circular array of N = 10
elements (C/A = ka = 10).
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For a uniform amplitude excitation of each element (I, = I;), (6-123) can be written as

+0o0
AF0,¢)=NIy Y J,ylkpg)e™ />~ (6-124)

m=—00

where J,(x) is the Bessel function of the first kind (see Appendix V). The part of the array factor
associated with the zero order Bessel function Ji,(kp,) is called the principal term and the remaining
terms are noted as the residuals. For a circular array with a large number of elements, the term J(kp,)
alone can be used to approximate the two-dimensional principal-plane patterns. The remaining terms
in (6-124) contribute negligibly because Bessel functions of larger orders are very small.

The MATLAB computer program Arrays, which is used to compute radiation characteristics of
planar and circular arrays, does compute the radiation patterns of a circular array based on (6-123)
and (6-124). The one based on (6-124) computes two patterns; one based on the principal term and
the other based on the principal term plus two residual terms.

6.13 MULTIMEDIA

In the publisher’s website for this book, the following multimedia resources are included for the
review, understanding, and visualization of the material of this chapter:

a. Java-based interactive questionnaire, with answers.

b. Java-based applet for computing and displaying the radiation characteristics, directivity, and
pattern of uniform and nonuniform linear arrays.

c. Java-based pattern animation of uniform and nonuniform linear arrays.

d. Matlab and Fortran computer program, designated as Arrays, for computing the radiation
characteristics linear, planar, and circular arrays.

e. Power Point (PPT) viewgraphs, in multicolor.
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PROBLEMS

6.1. Three isotropic sources, with spacing d between them, are placed along the z-axis. The exci-
tation coefficient of each outside element is unity while that of the center element is 2. For a
spacing of d = A/4 between the elements, find the
(a) array factor
(b) angles (in degrees) where the nulls of the pattern occur (0° < 6 < 180°)

(c) angles (in degrees) where the maxima of the pattern occur (0° < 6 < 180°)
(d) directivity using the computer program Directivity of Chapter 2.

6.2. Two very short dipoles (“infinitesimal”) of equal length are equidistant from the origin with
their centers lying on the y-axis, and oriented parallel to the z-axis. They are excited with
currents of equal amplitude. The current in dipole 1 (at y = —d/2) leads the current in dipole
2 (aty = +d/2) by 90° in phase. The spacing between dipoles is one quarter wavelength. To
simplify the notation, let £, equal the maximum magnitude of the far field at distance r due
to either source alone.

(a) Derive expressions for the following six principal-plane patterns:

1. |Ey(0)| for ¢ = 0° 4. |E4(0)| for ¢ = 0°
2. |Eg(0)] for ¢ = 90° 5. |E4(0)] for ¢ = 90°
3. |Ey(¢)| for 8 = 90° 6. |E4(¢)| for 6 = 90°

(b) Sketch the six field patterns.



PROBLEMS 369

6.3. A three-element array of isotropic sources has the phase and magnitude relationships shown.

6.4.

6.5.

6.6.

6.7.

The spacing between the elements is d = A/2.
(a) Find the array factor. (b) Find all the nulls.

#3¢+1

Repeat Problem 6.3 when the excitation coefficients for elements #1, #2 and #3 are, respec-
tively, +1, +j and —j.

Four isotropic sources are placed along the z-axis as shown. Assuming that the amplitudes of
elements #1 and #2 are +1 and the amplitudes of elements #3 and #4 are —1 (or 180 degrees
out of phase with #1 and #2), find

(a) the array factor in simplified form (b) all the nulls when d = A/2

Z
\

T #

d

% #1

dp2
>

dp2

% #3

d

l #4

A uniform linear broadside array of 4 elements are placed along the z-axis each a distance d
apart.

(a) Write the normalized array factor in simplified form.

(b) For a separation of d = 31/8 between the elements, determine the:
1. Approximate half-power beamwidth (in degrees).

2. Approximate directivity (dimensionless and in dB).

Three isotropic elements of equal excitation phase are placed along the y-axis, as shown in
the figure. If the relative amplitude of #1 is +2 and of #2 and #3 is +1, find a simplified
expression for the three-dimensional unnormalized array factor.

Z

f—d ——>f<—d —>]
#3 #1 #2
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6.8.

6.9.

6.10.

6.11.
6.12.

6.13.

6.14.

ARRAYS: LINEAR, PLANAR, AND CIRCULAR

Design a uniform broadside linear array of N elements placed along the z-axis with a uniform
spacing d = A/10 between the elements. Determine the closest integer number of elements
so that in the elevation plane the

(a) Half-power beamwidth of the array factor is approximately 60°.
(b) First-null beamwidth of the array factor is 60°.

A uniform array of 3 elements is designed so that its maximum is directed toward broadside.
The spacing between the elements is A/2. For the array factor of the antenna, determine

(a) all the angles (in degrees) where the nulls will occur.

(b) all the angles (in degrees) where all the maxima will occur.
(c) the half-power beamwidth (in degrees).

(d) directivity (dimensionless and in dB).

(e) the relative value (in dB) of the magnitude of the array factor toward end-fire (6, = 0°)
compared to that toward broadside (6, = 90°).

Design a two-element uniform array of isotropic sources, positioned along the z-axis a dis-
tance A /4 apart, so that its only maximum occurs along 6, = 0°. Assuming ordinary end-fire
conditions, find the

(a) relative phase excitation of each element (b) array factor of the array

(c) directivity using the computer program Directivity of Chapter 2. Compare it with Kraus’
approximate formula.

Repeat the design of Problem 6.10 so that its only maximum occurs along 8 = 180°.

Design a four-element ordinary end-fire array with the elements placed along the z-axis a
distance d apart. For a spacing of d = A/2 between the elements find the

(a) progressive phase excitation between the elements to accomplish this
(b) angles (in degrees) where the nulls of the array factor occur

(c) angles (in degrees) where the maximum of the array factor occur

(d) beamwidth (in degrees) between the first nulls of the array factor

(e) directivity (in dB) of the array factor. Verify using the computer program Directivity of
Chapter 2.

Design an ordinary end-fire uniform linear array with only one maximum so that its directivity
is 20 dB (above isotropic). The spacing between the elements is A./4, and its length is much
greater than the spacing. Determine the

(a) number of elements

(b) overall length of the array (in wavelengths)

(c) approximate half-power beamwidth (in degrees)

(d) amplitude level (compared to the maximum of the major lobe) of the first minor lobe
(in dB)

(e) progressive phase shift between the elements (in degrees).

Design a uniform ordinary end-fire linear array of 8 elements placed along the z-axis so that
the maximum amplitude of the array factor is oriented in different directions. Determine the
range (in \) of the spacing d between the elements when the main maximum of the array
factor is directed toward

(a) 6y =0° only; (b) 6y = 180° only;

(c) 6, =0° and 180° only; (d) 6, =0°,90°, and 180° only.
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6.16.

6.17.

6.18.

6.19.

6.20.
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It is desired to design a uniform ordinary end-fire array of 6 elements with a maximum toward
0y = 0° and 6, = 180°, simultaneously. Determine the

(a) smallest separation between the elements (in ).
(b) excitation progressive phase shift (in degrees) that should be used
(c) approximate directivity of the array (dimensionless and in dB)

(d) relative value (in dB) of the magnitude of the array factor toward broadside (6, = 90°)
compared to that toward the maximum (6, = 0° or 180°).

Redesign the end-fire uniform array of Problem 6.13 in order to increase its directivity while
maintaining the same, as in Problem 6.13, uniformity, number of elements, spacing between
them, and end-fire radiation.

(a) What different from the design of Problem 6.13 are you going to do to achieve this? Be
very specific, and give values.

(b) By how many decibels (maximum) can you increase the directivity, compared to the
design of Problem 6.13?

(c) Are you expecting the half-power beamwidth to increase or decrease? Why increase or
decrease and by how much?

(d) What antenna figure of merit will be degraded by this design? Be very specific in naming
it, and why is it degraded?

Ten isotropic elements are placed along the z-axis. Design a Hansen-Woodyard end-fire array
with the maximum directed toward 6, = 180°. Find the:

(a) desired spacing (b) progressive phase shift g (in radians)

(c) location of all the nulls (in degrees) (d) first-null beamwidth (in degrees)

(e) directivity; verify using the computer program Directivity of Chapter 2.

Design a uniform ordinary end-fire array of 6 elements placed along the z-axis and with the
maximum of the array factor directed only along 6, = 0° (end-fire only in one direction).
Determine the

(a) maximum spacing (in A) that can be used between the elements.
(b) maximum directivity (in dB) of the array factor using the maximum allowable spacing.

If the array was designed to be a Hansen-Woodyard end-fire array of the same number of
elements, what would the following parameters be for the new array?
(c) directivity (in dB). (d) Spacing (in ) between the elements.

Design a uniform linear array of elements placed long the z-axis with a uniform spacing of
0.2\ between the elements. It is desired that the array factor has end-fire radiation along the
6 = 0° direction only and it achieves its maximum possible directivity as we presently know.
Determine the:

(a) Linear array design that will achieve the desired specifications. State the name of the
design.

(b) Number of elements required for the design.

(c) Half-power beamwidth (in degrees) of the array factor.

(d) Directivity (dimensionless and in dB) of the array factor.

(e) Approximate side lobe level (in dB) of the array factor for this design.

It is desired to design a linear uniform end-fire array that will maximize its directivity along

the @ = 0° direction only. The array elements are all placed along the z-axis with a uniform
spacing d between them. The desired maximum directivity is 9.5545 dB. Determine the:
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6.21.

6.22.

6.23.

6.24.

6.25.
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(a) Array design; state its name. (b) Number of elements.
(c) Exact spacing between the elements (in A).

(d) Exact progressive phase difference between the elements (in degrees).
(e) Relative exact phase excitation of each of the elements (in degrees).
Take element #1 as a reference (0 degrees).

An array of 10 isotropic elements are placed along the z-axis a distance d apart. Assum-
ing uniform distribution, find the progressive phase (in degrees), half-power beamwidth (in
degrees), first-null beamwidth (in degrees), first side lobe level maximum beamwidth (in
degrees), relative side lobe level maximum (in dB), and directivity (in dB) (using equations
and the computer program Directivity of Chapter 2, and compare) for

(a) broadside (b) ordinary end-fire

(c) Hansen-Woodyard end-fire

arrays when the spacing between the elements is d = A/4.

Find the beamwidth and directivity of a 10-element uniform scanning array of isotropic
sources placed along the z-axis. The spacing between the elements is A /4 and the maximum
is directed at 45° from its axis.

It is desired to design a linear adaptive array of 6 isotropic elements placed along the z-axis
a distance A/2 apart. The linear adaptive array is to be able to receive a signal-of-interest
(SOI), (i.e., maximum) from a direction of § = 30° form the axis (z-axis) of the array. No
other specifications are placed upon the design. Choose the simplest type of a linear array
design that will accomplish this.

(a) State the array design; i.e., give its name.
(b) What should be the normalized amplitude excitation of each element?
(c) What should be the progressive phase difference (in degrees) between the elements.

It is desired to design a linear adaptive array of 6 isotropic elements placed along the z-axis
a distance A/2 apart. The linear adaptive array is to be able to simultaneously (all the SOI
and SNOIs at the same time):

® Receive a signal-of-interest (SOI), (i.e., maximum) from a direction of 6,, = 90° (perpen-
dicular to the z axiz)

e SNOIs (interferers; nulls) from

70.529° and 109.471°
0, =4 48.189° and 131.811° (0° <6 <180°
0° and 180°

Choose the simplest type of a linear array design that will accomplish placing the SOI and
all the SNOIs all at the same time.

(a) State the array design; i.e., give its name.

(b) What should be the normalized amplitude excitation of each element?

(c) Verity (compute) all the angles of 6 (in degrees) of the SOI and the SNOIs.
(d) What is the progressive phase difference (in degrees) between the elements.

Show that in order for a uniform array of N elements not to have any minor lobes, the spacing
and the progressive phase shift between the elements must be

(a) d =\/N,p =0 for a broadside array.
(b) d =MN/(2N), p = +kd for an ordinary end-fire array.
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6.28.
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6.30.

6.31.
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A uniform array of 20 isotropic elements is placed along the z-axis a distance A/4 apart with
a progressive phase shift of f rad. Calculate f (give the answer in radians) for the following
array designs:

(a) broadside (b) end-fire with maximum at 6, = 0°

(c) end-fire with maximum at §, = 180°

(d) phased array with maximum aimed at 6, = 30°
(e) Hansen-Woodyard with maximum at 6, = 0°
(f) Hansen-Woodyard with maximum at 6§, = 180°

Design a 19-element uniform linear scanning array with a spacing of A/4 between the ele-
ments.

(a) What is the progressive phase excitation between the elements so that the maximum of
the array factor is 30° from the line where the elements are placed?

(b) What is the half-power beamwidth (in degrees) of the array factor of part a?
(c) What is the value (in dB) of the maximum of the first minor lobe?
Verify using the computer program Arrays of this chapter.

For a uniform broadside linear array of 10 isotropic elements, determine the approximate
directivity (in dB) when the spacing between the elements is
(a) /4 (b) /2 (c) 3M/4 (d) A

Compare the values with those obtained using the computer program Arrays.

The maximum distance d between the elements in a linear scanning array to suppress grating
lobes is

g A
AT 4] cos(8y)]

where 0, is the direction of the pattern maximum. What is the maximum distance between the
elements, without introducing grating lobes, when the array is designed to scan to maximum
angles of

(a) 6, =30° (b) 6y =45° (c) 6, =60°

An array of 4 isotropic sources is formed by placing one at the origin, and one along the x-,
y-, and z-axes a distance d from the origin. Find the array factor for all space. The excitation
coefficient of each element is identical.

The normalized array factor of a linear array of discrete elements placed along the z-axis can
be approximated by

0<60<90°

(AF), = cosH}O < ¢ < 360°

Assume now that the same physical linear array, with the same number of elements, is placed
along the y-axis, and it is radiating in the 0 < 6 < 180°,0 < ¢ < 180° angular space. For the
array with its elements along the y-axis

(a) Write the new approximate array factor.
(b) Find the half-power beamwidth (in degrees) in the two principal planes.
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6.32.

6.33.

6.34.

6.35.

6.36.

6.37.

6.38.

6.39.

6.40.
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1. xy—plane 2. yz—plane

(c) Exact directivity (dimensionless and in dB) based on the approximate expression for the
array factor.

Repeat Problem 6.31 for an array factor of

0<60<90°

~ o
(AF), = cos H}OS¢S36O°

Design a linear array of isotropic elements placed along the z-axis such that the nulls of the
array factor occur at § = 0° and 8 = 45°. Assume that the elements are spaced a distance of
A/4 apart and that § = 0°.

(a) Sketch and label the visible region on the unit circle

(b) Find the required number of elements

(c) Determine their excitation coefficients

Design a linear array of isotropic elements placed along the z-axis such that the zeros of the
array factor occur at = 10°,70°, and 110°. Assume that the elements are spaced a distance
of A/4 apart and that § = 45°.

(a) Sketch and label the visible region on the unit circle
(b) Find the required number of elements
(c) Determine their excitation coefficients

Repeat Problem 6.34 so that the nulls occur at & = 0°,50° and 100°. Assume a spacing of
A/5 and f = 0° between the elements.

Design a three-element binomial array of isotropic elements positioned along the z-axis a
distance d apart. Find the
(a) normalized excitation coefficients (b) array factor

(c) nulls of the array factor for d = A (d) maxima of the array factor for d = A

Show that a three-element binomial array with a spacing of d < A/2 between the elements
does not have a side lobe.

Four isotropic sources are placed symmetrically along the z-axis a distance d apart. Design a
binomial array. Find the
(a) normalized excitation coefficients (b) array factor

(c) angles (in degrees) where the array factor nulls occur when d = 30 /4
Five isotropic sources are placed symmetrically along the z-axis, each separated from its

neighbor by an electrical distance kd = 5z /4. For a binomial array, find the
(a) excitation coefficients (b) array factor

(c) normalized power pattern

(d) angles (in degrees) where the nulls (if any) occur

Verify parts of the problem using the computer program Arrays.

Design a four-element binomial array of A/2 dipoles, placed symmetrically along the x-axis
a distance d apart. The length of each dipole is parallel to the z-axis.

(a) Find the normalized excitation coefficients.

(b) Write the array factor for all space.

(c) Write expressions for the E-fields for all space.
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6.43.
6.44.

6.45.
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Repeat the design of Problem 6.40 when the A/2 dipoles are placed along the y-axis.

Design a broadside binomial array of six elements placed along the z-axis separated by a
distance d = A /2.

(a) Find the amplitude excitation coefficients (a,,’s).
(b) What is the progressive phase excitation between the elements?
(c) Write the array factor.

(d) Now assume that the elements are A/4 dipoles oriented in the z-direction. Write the
expression for the electric field vector in the far field.

Verify parts of the problem using the computer program Arrays.
Repeat Problem 6.42 for an array of seven elements.

Five isotropic elements, with spacing d between them, are placed along the z-axis. For a

binomial amplitude distribution,

(a) write the array factor in its most simplified form

(b) compute the directivity (in dB) and compare using the computer program Arrays of this
chapter (d = A/2)

(c) find the nulls of the array when d = M0° < 6 < 180°)

A typical base station that you see as you travel around the city consists of an equilat-
eral/triangular array of dipoles. Assume that each side of the equilateral triangle consists
of three dipoles. Let us assume that each of the dipoles, at a frequency of 1.9 GHz, is A/2
in length. The dipoles are placed along the y-axis, are separated by a distance of A/2, and
are pointing along the z-axis. The center element is placed at the origin and the other two are
placed one on each side of the center element. Assuming that the elements are fed in phase
and are designed for a broadside binomial amplitude distribution:

1&2

(a) Determine the fotal normalized amplitude excitation coefficient of each element.

(b) Write an expression for the normalized array factor.

(c) Determine the maximum directivity (dimensionless and in dB) of the array factor when
d=2\/2.

(d) State the directivity (dimensionless and in dB) of each individual element.

(e) Making an educated guess, what would you expect the very maximum directivity (dimen-
sionless and in dB) of the entire 3-element array, which takes into account the element
pattern and the array factor, could not exceed?

A nonuniform linear array has 3 elements placed symmetrically along the z-axis and spaced
d = \/4 apart, and all are fed with the same phase. However, the total amplitude excitation
coefficients of the elements are as follows:

e 2 for the center element e Unity for each of the edge elements
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6.47.

6.48.

6.49.

6.50.

6.51.
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For the array factor of the array, determine the:

(a) Angle 0 (in degrees) where the maximum of the main lobe occurs.

(b) Angles 0 (in degrees) where the 2 half-power points of the main lobe occur.
(c) Half-power beamwidth (in degrees) of the main lobe.

(d) Approximate maximum directivity (dimensionless and in dB).

Design a five-element binomial array with elements placed along the z-axis.
(a) Derive the excitation coefficients.
(b) Write a simplified expression for the array factor.

(c) For a spacing of d = 3\/4, determine all the angles 6 (in degrees) where the array factor
possesses nulls.

(d) For a spacing of d = 3)\/4, determine all the angles 0 (in degrees) where the array factor
possesses main maxima.

Design a five-element binomial array with the elements placed along the z-axis. It is desired
that the amplitude pattern of the array factor has nulls only at & = 0° and 180°, one major
lobe with the maximum at 6 = 90°, and no minor lobes. To meet the requirements of this
array, determine the:

(a) Spacing between the elements (in \).

(b) Total amplitude excitation coefficient of each element.
(c) Directivity (dimensionless and in dB).

(d) Half-power beamwidth (in degrees).

(e) Verity the design using the computer program Arrays.

It is desired to design a binomial array with a uniform spacing between the elements of A/2
placed along the z-axis, and with an elevation half-power beamwidth for its array factor of
15.18 degrees. To accomplish this, determine the:

(a) Number of elements. (b) Directivity (dimensionless and in dB).

(c) Sidelobe level of the array factor (in dB).

Itis to design a linear nommiform broadside array whose directivity is 6 dB and whose pattern
has nulls only at # = 0° and 180°. Assume the elements are placed along the z-axis.

(a) From the nonuniform designs you have been exposed to, select one that will accomplish
this. State its name or distribution.

(b) Determine the closest integer number of elements.
(c) State the total amplitude excitation of each element.
(d) What is the spacing between the elements (in A).
(e) Determine the half-power beamwidth (in degrees).

It is desired to design two separate broadside square planar arrays (with 9x9 elements; a
total of 81 elements) with the elements placed along the xy-plane; the spacing between the
elements in both directions is A./2. One of the designs is a uniform design and the other one
is a binomial design. Assume that both arrays only radiate in the upper hemisphere (above
the xy-plane).
(a) For the Uniform planar array design: Determine, for the entire planar array, the:

e Half-power beamwidth in the elevation plane (in degrees).

e Half-power beamwidth in a plane perpendicular to the elevation plane (in degrees).

® Maximum directivity (dimensionless and in dB).
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(b) For the Binomial planar array design: Determine, for the entire planar array, the:
e Half-power beamwidth in the elevation plane (in degrees).

e Half-power beamwidth in a plane perpendicular to the elevation plane (in degrees).
* Maximum directivity (dimensionless and in dB).

(c) Isthe half-power beamwidth of the binomial array design, compared to that of the uniform
design:
e Smaller or larger? Why? Justify the answer. Is this what you expected?

(d) Is the maximum directivity of the binomial array design, compared to that of the uniform
design:
e Smaller or larger? Why? Justify the answer. Is this what you expected?

Design a nonuniform binomial broadside linear array of N elements, with a uniform spacing
d between the elements, which is desired to have no minor lobes.

(a) Determine the largest spacing d (in \).
(b) Find the closest integer number of elements so that the half-power beamwidth is 18°.

(c) Compare the directivities (in dB) of the uniform and binomial broadside arrays with the
same number of elements and spacing between them. Which is smaller and by how many
dB?

It is desired to design a broadside uniform linear array with the elements placed along the
x-axis. The design requires a total length (edge-to-edge) of the array is 4\ and the spacing
between the elements must be A/2. Determine the:

(a) Number of elements of the array.

(b) Half-power beamwidth (in degrees) for the uniform broadside array.

(c) Maximum directivity (dimensionless and in dB) for the uniform broadside array.
(d) Side lobe level (in dB) of the uniform broadside array.

(e) Total excitation coefficients if the linear array is a binomial broadside design (normalize
the coefficients so that those of the edge elements are unity).

(f) Half-power beamwidth (in degrees) if the linear array is a binomial broadside design.

(g) Maximum directivity (dimensionless and in dB) if the array is a binomial broadside
design.

(h) Sidelobe level (in dB) if the linear array is a binomial broadside design.

Design a nonuniform broadside binomial array of three elements that its pattern has one major

lobe and no minor lobes in 0° < 6 < 180°. It is also required that the pattern exhibits nulls

toward 8 = 0° and 8 = 180°. Determine the:

(a) Normalized total amplitude coefficient of each of the three elements (the ones at the edges
to be of unity amplitude).

(b) Half-power beamwidth (in degrees).

(c) Directivity (dimensionless and in dB).

The normalized array factor of a nonuniform linear broadside array of N elements, with a
uniform spacing of d between them, is given by

AF(0) = 2 cos? (% cos 0> = 2cosz(u), u= an cosd
(a) Determine the number of elements of the array with this specific array factor.

(b) What is the normalized (relative to the ones at the edge) total excitation coefficient of
each of the elements?
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(c) What is the specific name of this nonuniform classic broadside array design?

(d) For d = 3)\/4, determine all the angles (0° < 0 < 180°) where the array factor exhibits
nulls.

The array factor of a nonuniform linear array, with the elements placed along the z-axis and
with a uniform spacing d among the elements, is given by

AF =1 + cos (271% cos 6)

Determine the:
(a) Total number of elements of the array.

(b) Total excitation coefficient of each element. Identify the toral value of the coefficient with
the appropriate element.

(c) All the nulls (in degrees; 0° < 6 < 180°) of the array factor when the spacing between
the elements is d = 3\ /4.

(d) All the major maxima (in degrees; 0° < 6 < 180°) of the array factor when the spacing
between the elements is d = 31 /4.

A 4-element array of isotropic elements are placed along the z-axis, symmetrically about the
origin. The separation between all of the adjoining elements is d. The normalized amplitude
excitation of the two inner most elements is 3 while that of the two outer most elements (at
each of the two outer edges of the array) is unity. All of the elements are excited by the same
phase (f = 0).

(a) Write the array factor in simplified form. You may want to refer to (6-66).

(b) Assuming a spacing of d = A/2 between the elements, determine analytically:
e All the nulls (0° < 0 < 180°) in degrees.

e All the main maxima (0° < 6 < 180°) in degrees.
e Half-power beamwidth (in degrees).
® Directivity (dimensionless and in dB).

Design a four-element nonuniform linear broadside array with a uniform spacing between
the elements. It is desired that the array factor pattern has no minor lobes and the maximum
permissible spacing between the elements is selected. The selected spacing should be greater
than \/4.

(a) Select the appropriate nonuniform array design. State its name.

(b) Determine the maximum permissible spacing (in A) between the elements.
(c) Determine the normalized amplitude excitation coefficients.

(d) Write the array factor assuming the elements are placed along the x-axis.
(e) Write the array factor assuming the elements are placed along the y-axis.
(f) Half-power beamwidth (in degrees) of the array factor.

(g) Directivity (dimensionless and in dB) of the array factor.

The normalized Array Factor of a broadside array is given by
nd . rd .
(AF),, = 3 cos (T sin 6 cos d)) + cos (37 sin @ cos d))

which can also be written, using trigonometric identities, as

3
(AF), =4 [cos (%d sin @ cos ¢>] =4 cos? (”Td sin @ cos q’))
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where d is the spacing between the elements, and 6 and ¢ are the standard spherical coordinate
angles.

(a) What type of an array we have (linear, square, rectangular, circular, other)?
(b) Along what axis (x, y or z) are the elements positioned?

(c) What is the amplitude distribution of the elements along the respective axis (uniform,
binomial, Tschebysheff, cosine, cosine squared, other)?
(d) How many array elements are there along the respective axis?
(e) Assuming d = A/2, determine the:
* Approximate half-power beam width (in degrees) of the array, assuming isotropic
elements.

e FExact directivity (dimensionless and in dB) of the array, assuming isotropic elements
(dimensionless and in dB).

¢ Approximate directivity (dimensionless and in dB) of the array, using another/alternate
Sformula/expression which uses the half-power beamwidth information. Stale which one
you are using and why. Be specific.

e Silelobe level (in dB).
Show that the:
(a) Maximum spacing dy,,, of (6-76a) reduces to the optimum spacing d,,, of (6-76b).
(b) Optimum spacing d,,,; of (6-76b) reduces to the maximum spacing dy,,, of (6-76a).

Repeat the design of Problem 6.36 for a Dolph-Tschebyscheff array with a side lobe level of
—20dB.

Design a three-element, —40 dB side lobe level Dolph-Tschebyscheff array of isotropic ele-
ments placed symmetrically along the z-axis. Find the

(a) amplitude excitation coefficients (b) array factor
(c) angles where the nulls occur for d = 31/4(0° < 6 < 180°)
(d) directivity for d = 30/4 (e) half-power beamwidth for d = 3\/4

Design a four-element, —40 dB side lobe level Dolph-Tschebyscheff array of isotropic ele-
ments placed symmetrically about the z-axis. Find the
(a) amplitude excitation coefficients (b) array factor

(c) angles where the nulls occur for d = 3A/4.

Are all of the minor lobes of the same level? Why not? What needs to be changed to make
them of the same level?
Verify parts of the problem using the computer program Arrays.

Repeat the design of Problem 6.63 for a five-element, —20 dB Dolph-Tschebyscheff array.
Repeat the design of Problem 6.63 for a six-element, —20 dB Dolph-Tschebyscheff array.
Repeat the design of Problem 6.40 for a Dolph-Tschebyscheff distribution of —40 dB side
lobe level and A/4 spacing between the elements. In addition, find the

(a) directivity of the entire array

(b) half-power beamwidths of the entire array in the x-y and y-z planes

Repeat the design of Problem 6.41 for a Dolph-Tschebyscheff distribution of —40 dB side
lobe level and A /4 spacing between the elements. In addition, find the

(a) directivity of the entire array
(b) half-power beamwidths of the entire array in the x-y and y-z planes
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Design a five-element, —40 dB side lobe level Dolph-Tschebyscheff array of isotropic ele-
ments. The elements are placed along the x-axis with a spacing of A/4 between them. Deter-
mine the:

(a) normalized amplitude coefficients (b) array factor

(c) directivity (d) half-power beamwidth

The total length of a discrete-element array is 4A. For a —30 dB side lobe level Dolph-
Tschebyscheff design and a spacing of A/2 between the elements along the z-axis, find the:
(a) number of elements (b) excitation coefficients

(c) directivity (d) half-power beamwidth

Design a broadside three-element, —26 dB side lobe level Dolph-Tschebyscheff array of iso-
topic sources placed along the z-axis. For this design, find the:

(a) normalized excitation coefficients

(b) array factor

(c) nulls of the array factor when d = /2 (in degrees)

(d) maxima of the array factor when d = A/2 (in degrees)

(e) HPBW beamwidth (in degrees) of the array factor when d = A/2
(f) directivity (in dB) of the array factor when d = A /2

(g) verify the design using the computer program Arrays.

Design a broadside uniform array, with its elements placed along the z axis, in order the
directivity of the array factor is 33 dB (above isotropic). Assuming the spacing between the
elements is A/16, and it is very small compared to the overall length of the array, deter-
mine the:

(a) closest number of integer elements to achieve this.
(b) overall length of the array (in wavelengths).
(c) half-power beamwidth (in degrees).

(d) amplitude level (in dB) of the maximum of the first minor lobe compared to the maximum
of the major lobe.

The design of Problem 6.71 needs to be changed to a nonuniform Dolph-Tschebyscheff in
order to lower the side lobe amplitude level to —30 dB, while maintaining the same number
of elements and spacing. For the new nonuniform design, what is the:

(a) half-power beamwidth (in degrees).

(b) directivity (in dB).

Design a Dolph-Tschebyscheff linear array of 6 elements with uniform spacing between
them. The array factor must meet the following specifications:

1. —40 dB side lobe level.

2. Minor lobes from 0° < 8 < 90° all of the same level.

3. Largest allowable spacing between the elements (in wavelengths) and still meet above
specifications.

Determine:
(a) excitation coefficients, normalized so that the ones of the edge elements is unity.

(b) maximum allowable spacing (in wavelengths) between the elements and still meet spec-
ifications.

(c) plot (in 1° increments) the normalized (max = 0 dB) array factor (in dB). Check to see
that the array factor meets the specifications. If not, find out what is wrong with it.

Verify parts of the problem using the computer program Arrays.
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Design the array factor of a three-element Dolph-Tschebyscheff broadside array with a side
lobe level of —40 dB. Determine the

(a) normalized amplitude coefficients.

(b) maximum allowable spacing (in \) to maintain the same sidelobe level for all minor lobes.
(c) approximate half-power beamwidth (in degrees) using the spacing from part b.

(d) approximate directivity (in dB) using the spacing from part b.

Design a Dolph-Tschebyscheff broadside array of 5 elements with a —30 dB sidelobe level.

(a) Determine the normalized amplitude excitation coefficients. Make the ones at the edges
of the array unity.

(b) Determine the maximum spacing between the elements (in ) so that all sidelobes are
maintained at the same level of —30 dB.

(c) For the spacing of Part (b), determine the half-power beamwidth (in degrees). Compare
it to that of a uniform array of the same number of elements and spacing.

(d) For the spacing of Part b, determine the directivity (dimensionless and in dB).

It is desired to design a Dolph-Tschebyscheff nonuniform linear broadside array. The desired
array should have 20 elements with a uniform spacing between them. The required sidelobe
level —40 dB down from the maximum. Determine the:

(a) Maximum uniform spacing that can be used between the elements and still maintain a
constant sidelobe level of —40 dB for all minor lobes.

(b) Half-power beamwidth (in degrees) of a uniform broadside linear array of the same num-
ber of elements and spacing as the Dolph-Tschebyscheff array. Assume d = A/2.

(c) Half-power beamwidth (in degrees) of the Dolph-Tschebyscheff array with d = A/2.
(d) Directivity of the Dolph-Tschebyscheff array of d = A/2 (dimensionless and in dB).
(e) Directivity of the uniform broadside array of d = A/2 (dimensionless and in dB).

A nonuniform Dolph-Tschebyscheff linear broadside array of 4 elements are placed along
the z-axis each a distance d apart. For a separation of d = 31/8 between the elements and a
—27.959 dB sidelobe level, determine analytically (not graphically) the:

(a) Maximum element separation d,,,, (in A) that can be used to maintain the constant
—27.959 dB sidelobe level?

(b) Approximate half-power beamwidth (in degrees) using d = 3\/8.
(c) Approximate directivity (dimensionless and in dB) using d = 3\ /8.

Design a broadside linear Dolph-Tschebyscheff array with the elements placed along the z-
axis so that its array factor pattern, using the largest possible spacing between the elements
while still maintaining the same sidelobe level, has 9 minor lobes on each side of the three-
dimensional pattern. The desired sidelobe level is —60 dB. To accomplish this, determine the:

(a) Order of the Tschebyscheff polynomial.
(b) Number of elements.
(c) Maximum spacing between the elements (in A).

It is desired to design a broadside Tschebyscheff linear array of N = 10 elements, placed
along the z-axis, with a uniform spacing of d = /2 between the elements and with a uniform
sidelobe level of —26 dB from the main maximum. Determine the:

(a) Progressive phase (in degrees) excitation between the elements.
(b) Number of complete minor lobes in the elevation plane between 0° < 6 < 90°.

(¢) Maximum spacing between the elements to maintain the same sidelobe level over all the
minor lobes.
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It is desired to design a —25 dB broadside Dolph-Tschebyscheff array of 6 elements with a
spacing of d = A/4 between the elements. Determine the:

(a) HPBW (in degrees).

(b) Maximum directivity (dimensionless and in dB).

A Dolph-Tschebyscheff broadside array of 6 elements, 50-dB sidelobe level, and with a spac-
ing of A/2 between the elements is designed to operate at 9 GHz. For the array factor of the
antenna, determine the:

(a) Half-power beamwidth (in degrees). How much narrower or wider (in degrees) is this
half-power beamwidth compared to that of a uniform array of the same number of ele-
ments and spacing? Justify your answer. Do you expect it? Why?

(b) Directivity of array factor (in dB). How much smaller or larger (in dB) is this directivity
(in dB) compared to that of a uniform array of the same number of elements and spacing?
Justify you answer. Do you expect it? Why?

Dolph-Tschebyscheff designs are practical because you can perform the design to meet the
required specifications (like the selection of the number of elements, spacing between the
elements, and to maintain all the minor lobes at a required uniform/constant level). Such
a design leads to amplitude coefficients, which for modest sidelobe levels usually do not
vary more than 4:1, and can be achieved with efficient feed designs. This is usually not the
case for binomial designs where the amplitude excitation coefficients usually vary more than
100:1, especially when a large number of elements (equal or greater than 10) are required. To
demonstrate this, design two separate broadside linear arrays, with each design of 9 elements
placed along the z-axis. The spacing between the elements is A/2 and a sidelobe level of —30
dB for the Dolph-Tschebyscheff design.
(a) For the binomial broadside linear array design: Determine the:

e Sidelobe level (in dB).

¢ Half-power beamwidth (in degrees).

e Maximum directivity (dimensionless and in dB).
(b) For the Dolph-Tschebyscheff broadside linear array design: Determine the:

e Half-power beamwidth (in degrees).

* Maximum directivity (dimensionless and in dB).
(c) Is the half-power beamwidth of the binomial broadside linear array design, compared to

that of the Dolph-Tschebysceff broadside linear array design:

e Smaller or larger? Why? Justify the answer. Is this what you expected?
(d) Is the maximum directivity of the binomial broadside linear array design, compared to

that of the Dolph-Tschebyscheff broadside linea design:

e Smaller or larger? Why? Justify the answer. Is this what you expected?

In the design of antenna arrays, with a spacing of d < \/2, there is a choice between uniform,

binomial, cosine-squared, and Dolph-Tschebyscheff (of —25 dB sidelobe level) distributions.

If it is desired to:

(a) Select the design distributions with the smallest half-power beamwidths, place the anten-
nas in order of smaller-to-larger half-power beamwidths.

(b) Select the design distributions with the lowest sidelobe level, place the antennas in order
of lower-to-higher sidelobe level.

It is desired to design a planar square array with uniform illumination so that its approximate
half-power beamwidth is 1°, when the main beam maximum, is pointed in some direction
6. Determine the total dimension (in A) on each side of the square array when its maximum
is directed toward (z-axis is perpendicular to the plane of the array):
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(a) Broadside (6, = 0°); (b) 8, = 60° from broadside.
Treat the planar array in each plane as a source with a continuous distribution (like an
aperture), and assume it is large in terms of a wavelength.

In high-performance radar arrays low-sidelobes are very desirable. In a particular application
it is desired to design a broadside linear array which maintains all the sidelobes at the same
level of —30 dB. The number of elements must be 3 and the spacing between them must be
A4

(a) State the design that will meet the specifications.

(b) What are the amplitude excitations of the elements?

(c) What is the half-power beamwidth (in degrees) of the main lobe?

(d) What is the directivity (in dB) of the array?

Design a nonuniform amplitude broadside linear array of 5 elements. The total length of the
array is 2A. To meet the sidelobe and half-power beamwidth specifications, the amplitude
excitations of the elements must be that of a cosine-on-a-pedestal distribution represented by

Amplitude distribution = 1 + cos(zx,, /L)

where x,, is the position of the nth element (in terms of L) measured from the center of the
array. Determine the amplitude excitation coefficients a,,’s of the five elements. Assume uni-
form spacing between the elements and the end elements are located at the edges of the
array length.

Itis desired to design a uniform square scanning array whose elevation half-power beamwidth
is 2°. Determine the minimum dimensions of the array when the scan maximum angle is
(a) 6y =30° (b) 6, =45° (c) 6y = 60°

Determine the azimuthal and elevation angles of the grating lobes for a 10 X 10 element
uniform planar array when the spacing between the elements is A. The maximum of the main
beam is directed toward 6, = 60°, ¢y = 90° and the array is located on the x-y plane.

Four isotropic elements are placed on the xy-plane, and all four are excited with the same
amplitude; uniform array. Two of the elements are placed along the x-axis, symmetrically
about the z-axis, with a total separation of d, between them, and a phase excitation of +8,
between them. The other two elements are placed along the y-axis, symmetrically about the
z-axis, with a total separation of dy between them, and a phase excitation of ﬂy between them.

For far-field observations,

(a) Write (you do not have to derive it) the normalized array factor, in simplified form (sine
and/or cosines only), for only the two elements along the x-axis.

(b) Write (you do not have to derive it) the normalized array factor, in simplified form (sine
and/or cosines only), for only the two elements along the y-axis.

(c) Write (you do not have to derive it) the normalized array factor, in simplified form (sine
and/or cosines only), of the four elements along the x- and y- axes. You can use superpo-
sition.

(d) Without having to derive anything but based on the fundamental phasing principles that
we covered in class and discussed in the book, what should the phases p, and p, be (in
degrees) so that there is (assuming d, = dy =\/4):

* A maximum along the +z direction;, i.e., perpendicular to the xy-plane.
® A minimum along the +z direction; i.e., perpendicular to the xy-plane.
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Design a 10 X 8 (10 in the x-direction and 8 in the y) element uniform planar array so that
the main maximum is oriented along 6, = 10°, ¢y = 90°. For a spacing of d, = d, = A/8
between the elements, find the

(a) progressive phase shift between the elements in the x and y directions

(b) directivity of the array

(c) half-power beamwidths (in two perpendicular planes) of the array.

Verify the design using the computer program Arrays of this chapter.

It is desired to design a nonuniform binomial planar array of 4x4 elements placed along

the x-y plane with a uniform spacing of A/2 between the elements along both the x- and y-

directions. The z-axis is perpendicular to the array. During the operation, the array factor is

scanned with its maximum directed along the 8, = 30°, ¢, = 45° direction. Determine the:

(a) Half-power beamwidths (in degrees) of the array amplitude pattern in two mutually per-
pendicular planes that both pass through the maximum of the array factor.

(b) Exact directivity (dimensionless and in dB) of the array factor.

(c) Approximate directivity (dimensionless and in dB) of the array factor. To get credit, select
the most appropriate formula to compute the approximate directivity. State which one you
are using.

The main beam maximum of a 10 X 10 planar array of isotropic elements (100 elements) is
directed toward 6, = 10° and ¢, = 45°. Find the directivity, beamwidths (in two perpendic-
ular planes), and beam solid angle for a Tschebyscheff distribution design with side lobes
of —26 dB. The array is placed on the x-y plane and the elements are equally spaced with
d = \/4. It should be noted that an array with bidirectional (two-sided pattern) elements
would have a directivity which would be half of that of the same array but with unidirec-
tional (one-sided pattern) elements. Verify the design using the computer program Arrays of
this chapter.

Repeat Problem 6.90 for a Tschebyscheff distribution array of —30 dB side lobes.

In the design of uniform linear arrays, the maximum usually occurs at 8 = 6, at the design
frequency f = f,, which has been used to determine the progressive phase between the ele-
ments. As the frequency shifts from the designed center frequency f; to f},, the maximum
amplitude of the array factor at f = f;, is 0.707 the normalized maximum amplitude of unity
at f = f;. The frequency fj, is referred to as the half-power frequency, and it is used to deter-
mine the frequency bandwidth over which the pattern maximum varies over an amplitude
of 3 dB. Using the array factor of a linear uniform array, derive an expression for the 3-dB
frequency bandwidth in terms of the length L of the array and the scan angle 6,,.
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Antenna Synthesis and Continuous Sources

7.1 INTRODUCTION

Thus far in the book we have concentrated primarily on the analysis and design of antennas. In
the analysis problem an antenna model is chosen, and it is analyzed for its radiation characteristics
(pattern, directivity, impedance, beamwidth, efficiency, polarization, and bandwidth). This is usually
accomplished by initially specifying the current distribution of the antenna, and then analyzing it
using standard procedures. If the antenna current is not known, it can usually be determined from
integral equation formulations. Numerical techniques, such as the Moment Method of Chapter 8§,
can be used to numerically solve the integral equations.

In practice, it is often necessary to design an antenna system that will yield desired radiation
characteristics. For example, a very common request is to design an antenna whose far-field pattern
possesses nulls in certain directions. Other common requests are for the pattern to exhibit a desired
distribution, narrow beamwidth and low sidelobes, decaying minor lobes, and so forth. The task, in
general, is to find not only the antenna configuration but also its geometrical dimensions and excita-
tion distribution. The designed system should yield, either exactly or approximately, an acceptable
radiation pattern, and it should satisfy other system constraints. This method of design is usually
referred to as synthesis. Although synthesis, in its broadest definition, usually refers to antenna pat-
tern synthesis, it is often used interchangeably with design. Since design methods have been outlined
and illustrated previously, as in Chapter 6, in this chapter we want to introduce and illustrate antenna
pattern synthesis methods.

Antenna pattern synthesis usually requires that first an approximate analytical model is chosen
to represent, either exactly or approximately, the desired pattern. The second step is to match the
analytical model to a physical antenna model. Generally speaking, antenna pattern synthesis can be
classified into three categories. One group requires that the antenna patterns possess nulls in desired
directions. The method introduced by Schelkunoff [1] can be used to accomplish this; it will be
discussed in Section 7.3. Another category requires that the patterns exhibit a desired distribution
in the entire visible region. This is referred to as beam shaping, and it can be accomplished using
the Fourier transform [2] and the Woodward-Lawson [3], [4] methods. They will be discussed and
illustrated in Sections 7.4 and 7.5, respectively. A third group includes techniques that produce pat-
terns with narrow beams and low sidelobes. Some methods that accomplish this have already been
discussed; namely the binomial method (Section 6.8.2) and the Dolph-Tschebyscheff method (also
spelled Tchebyscheff or Chebyshev) of Section 6.8.3. Other techniques that belong to this family
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are the Taylor line-source (Tschebyscheff-error) [5] and the Taylor line-source (one parameter) [6].
They will be outlined and illustrated in Sections 7.6 and 7.7, respectively.

The synthesis methods will be utilized to design line-sources and linear arrays whose space factors
[as defined by (4-58a)] and array factors [as defined by (6-52)] will yield desired far-field radiation
patterns. The total pattern is formed by multiplying the space factor (or array factor) by the element
factor (or element pattern) as dictated by (4-59) [or (6-5)]. For very narrow beam patterns, the total
pattern is nearly the same as the space factor or array factor. This is demonstrated by the dipole
antenna (I < ) of Figure 4.3 whose element factor, as given by (4-58a), is sin €; for values of € near
90°(0 ~ 90°),sinf =~ 1.

The synthesis techniques will be followed with a brief discussion of some very popular line-source
distributions (triangular, cosine, cosine-squared) and continuous aperture distributions (rectangular
and circular).

7.2 CONTINUOUS SOURCES

Very long (in terms of a wavelength) arrays of discrete elements usually are more difficult to imple-
ment, more costly, and have narrower bandwidths. For such applications, antennas with continuous
distributions would be convenient to use. A very long wire and a large reflector represent, respec-
tively, antennas with continuous line and aperture distributions. Continuous distribution antennas
usually have larger sidelobes, are more difficult to scan, and in general, they are not as versatile as
arrays of discrete elements. The characteristics of continuously distributed sources can be approxi-
mated by discrete-element arrays, and vice-versa, and their development follows and parallels that
of discrete-element arrays.

7.2.1 Line-Source

Continuous line-source distributions are functions of only one coordinate, and they can be used to
approximate linear arrays of discrete elements and vice-versa.

The array factor of a discrete-element array, placed along the z-axis, is given by (6-52) and
(6-52a). As the number of elements increases in a fixed-length array, the source approaches a con-
tinuous distribution. In the limit, the array factor summation reduces to an integral. For a continuous
distribution, the factor that corresponds to the array factor is known as the space factor. For a line-
source distribution of length / placed symmetrically along the z-axis as shown in Figure 7.1(a), the
space factor (SF) is given by

+1/2 g ,
SF(H) — / In(Z/)e][kZ cos 0+¢,,(z )] dZ/ (7_1)
—1/2

where 1,(z/) and ¢,(2') represent, respectively, the amplitude and phase distributions along the
source. For a uniform phase distribution ¢, (z') = 0.

Equation (7-1) is a finite one-dimensional Fourier transform relating the far-field pattern of the
source to its excitation distribution. Two-dimensional Fourier transforms are used to represent the
space factors for two-dimensional source distributions. These relations are results of the angular
spectrum concept for plane waves, introduced first by Booker and Clemmow [2], and it relates the
angular spectrum of a wave to the excitation distribution of the source.

For a continuous source distribution, the total field is given by the product of the element and
space factors as defined in (4-59). This is analogous to the pattern multiplication of (6-5) for arrays.
The type of current and its direction of flow on a source determine the element factor. For a finite
length linear dipole, for example, the total field of (4-58a) is obtained by summing the contributions
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Figure 7.1 Continuous and discrete linear sources.

of small infinitesimal elements which are used to represent the entire dipole. In the limit, as the
infinitesimal lengths become very small, the summation reduces to an integration. In (4-58a), the
factor outside the brackets is the element factor and the one within the brackets is the space factor
and corresponds to (7-1).

7.2.2 Discretization of Continuous Sources

The radiation characteristics of continuous sources can be approximated by discrete-element arrays,
and vice-versa. This is illustrated in Figure 7.1(b) whereby discrete elements, with a spacing d
between them, are placed along the length of the continuous source. Smaller spacings between the
elements yield better approximations, and they can even capture the fine details of the continuous
distribution radiation characteristics. For example, the continuous line-source distribution 7,,(z’) of
(7-1) can be approximated by a discrete-element array whose element excitation coefficients, at the
specified element positions within —//2 < 7/ < /2, are determined by the sampling of 1,,(z)e/®s.
The radiation pattern of the digitized discrete-element array will approximate the pattern of the con-
tinuous source.

The technique can be used for the discretization of any continuous distribution. The accuracy
increases as the element spacing decreases; in the limit, the two patterns will be identical. For large
element spacing, the patterns of the two antennas will not match well. To avoid this, another method
known as root-matching can be used [7]. Instead of sampling the continuous current distribution to
determine the element excitation coefficients, the root-matching method requires that the nulls of the
continuous distribution pattern also appear in the initial pattern of the discrete-element array. If the
synthesized pattern using this method still does not yield (within an acceptable accuracy) the desired
pattern, a perturbation technique [7] can then be applied to the distribution of the discrete-element
array to improve its accuracy.

7.3 SCHELKUNOFF POLYNOMIAL METHOD

A method that is conducive to the synthesis of arrays whose patterns possess nulls in desired direc-
tions is that introduced by Schelkunoff [1]. To complete the design, this method requires information
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on the number of nulls and their locations. The number of elements and their excitation coefficients
are then derived. The analytical formulation of the technique follows.

Referring to Figure 6.5(a), the array factor for an N-element, equally spaced, nonuniform ampli-
tude, and progressive phase excitation is given by (6-52) as

N N
AF = anej(n—l)(kdcos 0+p) _ Z anej(n—l)y/ (7_2)

n=1 n=1

where a,, accounts for the nonuniform amplitude excitation of each element. The spacing between
the elements is d and f is the progressive phase shift.
Letting
z=x +]y — ejl[/ — ej(ka’cos 0+p) (7_3)

we can rewrite (7-2) as
N
AF = Zanz"_l =a +ayz+ a3 + - +ayd'! (7-4)
n=1

which is a polynomial of degree (N — 1). From the mathematics of complex variables and algebra,
any polynomial of degree (N — 1) has (N — 1) roots and can be expressed as a product of (N — 1)
linear terms. Thus we can write (7-4) as

AF =a,(z—z))(z— 2)(z — 23) = (T — Zy_1) (7-5)

where 71,25, 23, ..., Zy_; are the roots, which may be complex, of the polynomial. The magnitude of
(7-5) can be expressed as

|AF| = |a,llz — z;llz — z2llz — z3| -+ 12 — Zv | (7-6)

Some very interesting observations can be drawn from (7-6) which can be used judiciously for the
analysis and synthesis of arrays. Before tackling that phase of the problem, let us first return and
examine the properties of (7-3).

The complex variable z of (7-3) can be written in another form as

z=lzléY = |zl 2y = 1 2y (7-7)

w:kdcos6’+ﬁ:27ﬂdcos0+ﬁ (7-7a)

It is clear that for any value of d, @, or f the magnitude of z lies always on a unit circle; however
its phase depends upon d, 8, and f. For f = 0, we have plotted in Figures 7-2(a)—(d) the value of z,
magnitude and phase, as 0 takes values of 0 to z rad. It is observed that for d = A /8 the values of z, for
all the physically observable angles of 6, only exist over the part of the circle shown in Figure 7.2(a).
Any values of z outside that arc are not realizable by any physical observation angle 0 for the spacing
d = \/8. We refer to the realizable part of the circle as the visible region and the remaining as the
invisible region. In Figure 7.2(a) we also observe the path of the z values as € changes from 0° to
180°.
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Figure 7.2 Visible Region (VR) and Invisible Region (IR) boundaries for complex variable z when g = 0.

In Figures 7.2(b)—(d) we have plotted the values of z when the spacing between the elements is
A/4,N/2, and 30 /4. It is obvious that the visible region can be extended by increasing the spacing
between the elements. It requires a spacing of at least A/2 to encompass, at least once, the entire
circle. Any spacing greater than /2 leads to multiple values for z. In Figure 7.2(d) we have double
values for z for half of the circle when d = 3)/4.

To demonstrate the versatility of the arrays, in Figures 7.3(a)—(d) we have plotted the values
of z for the same spacings as in Figure 7.2(a)—(d) but with a # = /4. A comparison between the
corresponding figures indicates that the overall visible region for each spacing has not changed but
its relative position on the unit circle has rotated counterclockwise by an amount equal to f.

We can conclude then that the overall extent of the visible region can be controlled by the spacing
between the elements and its relative position on the unit circle by the progressive phase excitation
of the elements. These two can be used effectively in the design of the array factors.

Now let us return to (7-6). The magnitude of the array factor, its form as shown in (7-6), has a
geometrical interpretation. For a given value of z in the visible region of the unit circle, corresponding
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Figure 7.3  Visible Region (VR) and Invisible Region (IR) boundaries for complex variable z when f = 7 /4.

to a value of € as determined by (7-3), | AF]| is proportional to the product of the distances between
z and z7,2,23, ... ,2y_1, the roots of AF. In addition, apart from a constant, the phase of AF is
equal to the sum of the phases between z and each of the zeros (roots). This is best demonstrated
geometrically in Figure 7.4(a). If all the roots z;, 25,23, ..., 2y_; are located in the visible region
of the unit circle, then each one corresponds to a null in the pattern of |AF| because as € changes
z changes and eventually passes through each of the z,,’s. When it does, the length between z and
that z,, is zero and (7-6) vanishes. When all the zeros (roots) are not in the visible region of the unit
circle, but some lie outside it and/or any other point not on the unit circle, then only those zeros on the
visible region will contribute to the nulls of the pattern. This is shown geometrically in Figure 7.4(b).
If no zeros exist in the visible region of the unit circle, then that particular array factor has no nulls
for any value of . However, if a given zero lies on the unit circle but not in its visible region, that
zero can be included in the pattern by changing the phase excitation § so that the visible region
is rotated until it encompasses that root. Doing this, and not changing d, may exclude some other
zero(s).
To demonstrate all the principles, we will consider an example along with some computations.



SCHELKUNOFF POLYNOMIAL METHOD 391

(a) Rootsof array factor (b) Roots of array factor on unit circle
and within visible region
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